
Interacting Particles Systems and Efficient
Approximations for Large Sparse Graphs

Senior Thesis Advisor: Kavita Ramanan
Graduate Student Mentor: Ankan Ganguly

Mitchell Wortsman

Applied Mathematics, Brown University

2018
April

1

Abstract: Stochastic dynamics arising in a variety of applications including epi-
demiology, statistical physics, and load balancing are modeled by so called interacting
particle systems. The dynamics of interacting particle systems are governed by an
underlying graph structure and are typically high dimensional systems involving a
large number of particles. The high dimensionality makes the characterization of the
dynamics of a typical particle challenging. Approximations for the dynamics have
been mainly studied in the case where the underlying graph is dense. Building on re-
cently developed theory, we present novel computational algorithms for approximating
local dynamics on sparse graphs. We demonstrate the effectiveness of our approx-
imations through numerical results, and show that in many cases they outperform
existing algorithms.

Acknowledgements: Thank you to Professor Ramanan for showing me how to
research, and for immeasurable patience and support throughout this process. Thank
you to Ankan Ganguly for mentorship and guidance.

2

Contents

1 Introduction 5

2 Interacting Particle Systems 5

2.1 Formal Definitions . 6

2.1.1 Probabilistic Graphical Models 6

2.1.2 Discrete Time Interacting Particle Systems 7

2.1.3 Continuous Time Interacting Particle Systems 8

2.2 Examples . 8

2.2.1 The SIR Process . 9

2.2.2 The Contact Process . 10

2.2.3 Load Balancing . 11

2.2.4 Ising . 12

2.2.5 Potts . 15

2.3 Conditional Independence and the Double Boundary 16

3 Existing Approximations 21

3.1 Mean Field Approximation . 21

3.1.1 Description . 21

3.1.2 Implementation . 22

3.2 Cavity Methods . 25

3.2.1 Cavity Method for Graphical Models 25

3.2.2 Dynamic Cavity Method . 28

3.2.3 Filling in the Dynamic Cavity Method 29

3.3 Moment Approximations . 30

3.3.1 Notation . 30

3.3.2 The Power of Two Choices on Graphs: The Mean Field Ap-
proximation . 31

3

3.3.3 The Power of Two Choices on Graphs: the Pair-Approximation
is Accurate [6, Section 2.2] . 32

4 Local Recursions 33

4.1 Ring . 33

4.1.1 The Local Sampling Algorithm on a Ring 34

4.1.2 Local Recursions on a Ring 36

4.2 Local Recursions for More General Graphs 39

4.2.1 Revisiting The Ring . 43

4.2.2 d-Regular Trees . 45

4.2.3 Load Balancing on a Ring . 46

4.3 The τ -Approximation . 47

4.4 Pair and Triplet-approximations for the Ring 49

5 Results 51

5.1 Implementation Details . 51

5.2 Small T Exact Trajectory . 51

5.3 Approximate Time Marginals . 55

5.4 Approximate Equilibrium . 57

5.5 Comparison with the Pair-Approximation 60

6 Conclusion and Future Work 61

A Appendix 63

A.1 Proof of Lemma 2.1. 63

A.2 Proof of Remark 2.1 . 63

A.3 Proof of Lemma 2.2 . 64

A.4 Proof of Lemma 2.5. 66

A.5 The “Triplet” Approximation for the SIR Process on a Ring (Full
Particle Trajectories) . 66

A.6 Full Derivation of the τ -Approximation 67

4

A.7 System Organization . 69

1 Introduction

Three characteristics are ubiquitous in models of real world phenomena. Such models
often include objects, interactions between objects, and uncertainty. An object can
range from a single atom to a human being, but for the remainder of this work we
will refer to an object abstractly as a particle. Accordingly, it is natural to study
stochastic networks of particles, often called an interacting particle systems.

In specific interaction networks the dynamics of a typical particle is well understood.
It was shown in [17] that as the number of particle tends to infinity we can use
the so called mean field approximation to exactly characterize particle dynamics if
the interaction network is complete. Moreover, it was recently shown in [4] that
this approximation is asymptotically accurate for sequences of dense graphs whose
degree approaches infinity. Consequently, the mean field approximation has become
somewhat of the standard in industry and among the scientific community. However,
this frequently used approximation is quite inaccurate for sparse graphs.

In this work we build on novel theoretical results by Lacker, Ramanan, and Wu
in [11] to construct novel algorithms for approximating local dynamics on sparse
graphs. We present an algorithm we call the local recursion, which is provably exact.
However, our local recursion has exponential computational complexity in time and
so we also give a polynomial time approximation.

This report is organized as follows. In Section 2 we present a formal definition of
an interacting particle system along with a series of important examples. We then
discuss existing approximations for the dynamics of a typical particle in Section 3.
In Section 4 we use recently developed theory to construct our new local recursions.
Finally we showcase the effectiveness of our algorithms in Section 5.

2 Interacting Particle Systems

When considering systems of many random variables it is natural to model the
underlying interaction structure with a graph. In the study of probabilistic graphical
models a single random variable is assigned to each node. However, in a myriad of
applications including epidemiology, statistical physics, and load balancing, we are
interested in the behavior of a system throughout time. We must therefore move
beyond a static graphical model. Instead we consider each node to be a particle with
a state that fluctuates throughout time.

5

2.1 Formal Definitions

2.1.1 Probabilistic Graphical Models

In the study of probabilistic graphical models we consider a graph G = (V , E) where
V is a set of nodes and E ⊆ V × V is a set of edges. For each i ∈ V we let Xi be a
random variable taking values in some countable space X . It is standard notation
to let X = {Xi}i∈V and XA = {Xi}i∈A for some A ⊆ V .

It is often relevant to consider the boundary of a set A ⊆ V , defined as

∂A = {v ∈ V : (u, v) ∈ E for some u ∈ A}. (2.1)

We provide an example of A and ∂A for the lattice graph below.

A

∂A

Figure 1: A and ∂A for a Lattice Graph (V = Z2 and E = {(u, v) : ‖u− v‖1 = 1})

One of the most common classes of probabilistic graphical models is called a Markov
random field (MRF), studied extensively in [10] . A probability measure P on X is
said to be a MRF with respect to G if for any A ⊆ V

P
(
XA = xA|XV\A = xV\A

)
= P (XA = xA|X∂A = x∂A) (2.2)

for xV such that P(XV = xV) > 0. Equation 2.2 is often called the spatial Markov
property.

In general for random variables X, Y and Z we say that X and Y are conditionally
independent given Z if P(X = x|Y, Z) = P(X = x|Z), or equivalently P(X = x, Y =
y|Z) = P(X = x|Z)P(Y = y|Z). This is written as X ⊥⊥ Y | Z. Accordingly, we
may restate the spatial Markov property as

XA ⊥⊥ XV\(A∪∂A) | X∂A. (2.3)

6

Lemma 2.1. Consider a Markov Random Field P with respect to G = (V , E) where
A,B and S are a disjoint partition of V . If every path

{(u0, u1), (u1, u2), ..., (uk−1, uk)} ⊆ E

with u0 ∈ A, uk ∈ B contains at least one node uj ∈ S then XA is conditionally
independent of XB given XS.

Proof. This follows immediately from ∂A ∩B = ∅. See Appendix for details.

Lemma 2.1 is not immediately useful in this work. There is, however, an analogous
Lemma for an interacting particle system by Lacker, Ramanan, and Wu in [11].
This theoretical result is fundamental for the development of our local recursions, as
further discussed in Section 2.3.

2.1.2 Discrete Time Interacting Particle Systems

Interacting particle systems are modeled by a graph G = (V , E) where V is a set of
particles and E ⊆ V × V is the set of pairwise interactions between particles. The
state of particle i ∈ V at time t ∈ T is given by the random variable Xi(t) which
takes values in some countable space X . T ⊆ R+ ∪ {0} is a sequence of times which
must be countable in the discrete time setting.

We let X(t) = (Xi(t))i∈V denote the state of all particles at time t. Moreover
we follow the notation of [9] to denote the trajectory of a particle up to time
T ∈ T by a superscript as XT

i = (Xi(t))t∈T,t≤T . When T = N we have XT
i =

(Xi(0), Xi(1), ..., Xi(T)).

Figures 2 and 3 illustrate two possible interaction networks.

Figure 2: Complete Interaction Network Figure 3: Ring Interaction Network

There are three properties satisfied by the interacting particle systems we consider.

1. An interacting particle system must obey the Markov property. A probability
measure P on {X(t) : t ∈ T} is said to satisfy the Markov property if

X(t) ⊥⊥ {X(s′) : s′ < s} | X(s) (2.4)

7

for any s, t ∈ T with s < t.

2. In an interacting particle system, each particle changes its state according
only to its present state and the state of its neighbors. We call this the local
interactions property.

Formally, there exists some measurable function g such that

P(Xi(t) = v | Xi(t− 1) = u) = g(v, u,X∂i(t− 1)). (2.5)

We may equivalently introduce independent random variables ξ = {ξi(t)}i∈V,t∈T
and let

Xi(t) = f(Xi(t− 1), X∂i(t− 1), ξi(t)) (2.6)

for some measurable function f . The random variables ξi(t) introduce random-
ness. Without ξ the system is deterministic given the initial conditions X(0).
It is important to note that ξi(t) is independent not only of every ξj(s) but
also Xj(s) for (j, s) 6= (i, t).

Remark 2.1. The formulations given by equations 2.5 and 2.6 are equivalent.
Proof of this equivalence may be found in the appendix.

3. The initial conditions {Xu(0)}u∈V are independent. Though this property need
not always hold, it will make our analysis simpler.

2.1.3 Continuous Time Interacting Particle Systems

The extension to an uncountable set T ⊆ R+ ∪ {0} is quite natural. The only
additional restriction is that Xi(t) is right continuous and has finite left limits with
respect to t. The Markov property in equation 2.4 is unchanged and equation 2.6
simply becomes

Xi(t) = f(Xi(t−), X∂i(t−), ξi(t)) (2.7)

where XA(t−) = lims↗tXA(s) for any A.

2.2 Examples

In this section we present some interesting and relevant examples of interacting par-
ticle systems. We begin with a discussion of compartmental models in epidemiology
then move to load balancing and classical examples from statistical physics. We are
brief in our description as the study of each model could comprise an entire report.

8

2.2.1 The SIR Process

Proposed by Kermack and McKendrick in 1927, the susceptible-infected-recovered
(SIR) process was one of the first models for epidemics [15]. In the SIR process a
particle can transition from susceptible to infected and from infected to recovered.
Though the model was originally developed to study the spread of disease among
human beings, it has recently found various applications in new fields including
distributed systems.

Traditionally the SIR process is studied in the case where every particle interacts
with every other particle. The system is then expressed as the series of differential
equations

dSN
dt

= −βINSN
dIN
dt

= βINSN − αIN
dRN
dt

= αRN .

(2.8)

where SN is the number of susceptible particles, IN is the number of infected particles,
and RN is the number of recovered particles. A particle recovers at rate α and
infection occurs at rate βIN . For the purpose of this report we will be considering an
analogous formulation where the infection rate scales with the number of neighbors.

We now present the analogous discrete time process we will consider. For an in-
teraction network G where each node has exactly d neighbors, we consider the SIR
process where the state of a particle at time t is either S, I or R. The system may
be described by the following equations

{Xu(0)}u∈V ∼ i.i.d. ν

P(Xi(t) = I|Xi(t− 1) = S) = p
d

∑
j∈∂i 1{Xj(t−1)=I}

P(Xi(t) = R|Xi(t− 1) = I) = q

P(Xi(t) = S|Xi(t− 1) = I) = P(Xi(t) = I|Xi(t− 1) = R) = 0

(2.9)

where p/d is the equivalent of β and q is analogous to α. We visualize the transition
dynamics in figure 4.

Susceptible Infected Recovered

p * [Ratio of Infected Neighbors] q

Figure 4: Dynamics of Susceptible (white), Infected (blue), and Recovered (green).

Figures 5 and 6 showcase simulations of the SIR process on two different interaction
networks with 40 particles and parameters p = 0.5, q = 0.1. The top plot displays

9

the number of particles in each state while the bottom plot shows the states at the
level of an individual particle. On the bottom plot, each row is a different particle
with the susceptible state shown in white, infected in blue, and recovered in green.
Note that local bands of infection are prevalent when the interaction network is a
ring.

Figure 5: Sir Process (Complete) Figure 6: SIR Process (Ring)

2.2.2 The Contact Process

The contact process is another model for the spread of disease. It is similar to
the SIR process but has no recovered state. A particle instead transitions back to
susceptible. The contact process is studied extensively on trees in [19]. Formally,
Xi(t) is either 0 (susceptible) or 1 (infected) and the discrete transition probabilities
may be described by the following equations.

{Xu(0)}u∈V ∼ i.i.d. ν

P(Xi(t) = 1 | Xi(t− 1) = 0) = p
d

∑
j∈∂iXj(t− 1)

P(Xi(t) = 0 | Xi(t− 1) = 1) = q

(2.10)

For the contact process we also give the continuous time formulation. We let Ni be
a poisson process of rate q for all i ∈ V and let Ni,j be a poisson process of rate p/d

10

for i, j ∈ E . The contact process in continuous time is then described by{
{Xu(0)}u∈V ∼ i.i.d. ν

Xi(t) = Xi(0)−
∫ t

0
Xi(s)Ni(ds) +

∑
j∈∂i

∫ t
0
(1−Xj(s))Xi(s)Ni,j(ds)

(2.11)

where ∫ t

0

Xi(s)Ni(ds) (2.12)

is the number of times particle i recovers and∑
j∈∂i

∫ t

0

(1−Xj(s))Xi(s)Ni,j(ds) (2.13)

is the number of times particle i becomes infected.

2.2.3 Load Balancing

If we wish to understand how network traffic should be allocated it is imperative to
understand how servers behave given an allocation scheme. This problem has become
increasingly important with the advent of distributed technology such as the cloud.
The system studied by Mitzenmacher in [16] consists of a network of N servers, each
with a queue of jobs. Job arrivals are modeled by a Poisson stream with rate Nλ for
(λ < 1) and the processing time for each job is exponentially distributed with mean
1. For each incoming job, d servers are chosen at random and the job is allocated to
the server with the shortest queue. If Xi(t) denotes the number of jobs in the queue
of server i at time t, then we are interested in the fixed point of sk = P(Xi(t) > k) as
t, N →∞. It is well known that for d = 1, sk decreases exponentially in k. However,
Mitzenmacher demonstrates in [16, Lemma 2] that for d > 1 the system converges
to the unique fixed point

sk = λ
di−1
d−1 (2.14)

and so sk is said to decrease doubly exponentially for d ≥ 1.

The paradigm studied by Gast in [6] is similar, but accounts for the underlying graph
structure of the server network Gs = (Vs, Es). For each incoming job, a server u1 is
chosen uniformly from Vs then a second server u2 is chosen uniformly from ∂u1. The
job is then allocated to the server among u1 and u2 with the shortest queue. When
G is the complete graph this model corresponds exactly to that of Mitzenmacher for
d = 2.

We now consider a similar model in which jobs arrive at each of the N servers as a
Poisson stream of rate λ. A job incident at server j is allocated to the server with
the shortest queue among j and ∂j. An arrival at j which is allocated to k ∈ ∂j is
shown in Figure 7.

11

5
47

8 2

Arrival
Allocation

h

i

j

k

l

Figure 7: An Arrival at Server j is Allocated to Server k

When we formulate the problem as an interacting particle system the interaction
network differs from the server network, as illustrated by an example in figures 8
and 9 for load balancing on the ring.

h

i

j

k

l

Figure 8: Server Network Gs

i j

k

l

m

n

h

g

f

eFigure 9: Interaction Network Gi

We refer back to figure 7 for an example which illustrates the discrepancy between
the networks. We may not claim that the state of server j at time t evolves based
only upon the states of servers i and k. Consider an arrival at server i, an event
which may change the state of server j. Clearly we must know the state of server h
in order to determine if the job which has arrived at i will be routed to server j.

2.2.4 Ising

The Ising model is a mathematical model for ferromagnetism in which each particle
has magnetic spin up (+1) or down (−1). Developed in 1921 by Wilhelm Lenz, the

12

model was later named after his student Ernst Ising. The Ising model is discussed
further in [12, 13] and we provide some relevant theory below.

The Ising model consists of N particles with an interaction network G = (V , E)
that is traditionally a lattice. For each configuration of particle spins σ ∈ {−1, 1}N
there is an associated energy H(σ). A probability distribution π over all possible
configurations may be obtained by enforcing that lower energy configurations are
more likely to be observed. For β > 0 and normalization constant Zβ,n, π(σ) is given
by

π(σ) =
1

Zβ,N
e−βH(σ) (2.15)

where
Zβ,N =

∑
σ∈{−1,1}N

e−βH(σ). (2.16)

As β → 0 all configurations become equally likely. Alternatively, when β is large, π
is concentrated at low energy configurations.

The energy functionH, also be referred to as the Hamiltonian, depends on parameters
J, h ∈ R.

H(σ) = −J
∑

(u,v)∈E

σuσv − h
∑
u∈V

σu. (2.17)

The first term of equation 2.17 is referred to as the interaction energy while the
second term is called the external field. When J > 0 the system is said to be
ferromagnetic as the interaction energy will be lower when neighboring particles
have matching spins. The second term accounts for an external magnetic field which
breaks the symmetry between positive and negative spins. When h > 0 we expect
configurations with more positive spin particles to be more likely.

It is important to note that π, which may also be referred to as a Gibbs Measure,
obeys the spatial Markov property with respect to the interaction network G.

For a general interaction network it is computationally infeasible to compute π.
However, we may use Markov Chain Monte Carlo (MCMC) techniques to obtain
a sample σ from π. We describe one variant of MCMC for Ising in Algorithm 1.
Though beyond the scope of this report there is a myriad of theory surrounding the
exact number of iterations required for algorithm 1, which we denote S.

13

Algorithm 1 IsingMCMC

Initialize σi i.i.d. for i ∈ V .
for s = 1, 2, ..., S do

Choose k ∈ {1, ..., N} uniformly.
Let τj = σj for all j 6= k and τk = 1− σk.
Let σ = τ with probability min {1, π(τ)/π(σ)}.

end for
return σ

Algorithm 1 relies on the fact that we may calculate the ratio π(τ)/π(σ) without
explicitly computing π.

π(τ)

π(σ)
= e−β(H(τ)−H(σ)) (2.18)

and so when τj = σj for all j 6= k we have

H(τ)−H(σ) = −
∑

(k,v)∈E

Jτkσv − hτk −

− ∑
(k,v)∈E

Jτkσv − hσk

 (2.19)

= −
∑
v∈∂k

Jτkσv
2
− hτk

2
(2.20)

as τk − σk = τk/2.

We now verify that as S →∞, algorithm 1 returns a sample σ from π. Let P (σ, τ)
be the probability of transitioning from configuration σ to configuration τ in the
body of the for loop. By examining algorithm 1 we find that P is given by

P (σ, τ) =

1
N

min {1, π(τ)/π(σ)} if ‖τ − σ‖1 = 2

0 if ‖τ − σ‖1 > 2

1−
∑

τ ′ 6=σ P (σ, τ ′) if τ = σ.

(2.21)

We may restate algorithm 1 as the process of choosing σ(0) at random then drawing
σ(n) from the distribution µn(σ(n)) = P

(
σ(n−1), σ(n)

)
for 1 ≤ n ≤ T .

We now claim that the Markov chain generated by matrix P has stationary distri-
bution π. This will imply that as S grows large σ is distributed according to π. A
sufficient condition for P to have stationary distribution π is

π(σ)P (σ, τ) = π(τ)P (τ, σ). (2.22)

We will now show that equation 2.22 holds. Without loss of generality assume
π(τ) < π(σ) and observe that

π(σ)P (σ, τ) = π(σ)
1

N
min {1, π(τ)/π(σ)} (2.23)

14

= π(σ)
1

N

π(τ)

π(σ)
(2.24)

= π(τ)
1

N
(2.25)

= π(τ)
1

N
min {1, π(σ)/π(τ)} (2.26)

= π(τ)P (τ, σ). (2.27)

We now introduce an analogous discrete time interacting particle system, as studied
in [2] and [13], which we refer to as parallel Ising.

If a particle k is chosen to switch its value in the body of the for loop, the transition
from σk to τk occurs with probability

min

exp

−β
− ∑

(k,v)∈E

Jτkσv
2
− hτk

2

 , 1

 (2.28)

which depends only on particles ∂k and k. Accordingly, we may construct an in-
teracting particle system which approximates algorithm 1 as follows. Let Xi(0) be
chosen i.i.d. as in algorithm 1. Then for t ≥ 1 and i ∈ V let the transition probability
be

P (Xi(t) = xi(t) | Xi(t− 1) = xi(t− 1))

=
1

N
min

{
exp

(
−β

(
−
∑
j∈∂i

Jxi(t)Xj(t− 1)

2
− hxi(t)

2

))
, 1

}
(2.29)

for xi(t) 6= xi(t − 1). We may then account for the case of xi(t) = xi(t − 1) as the
total probability must sum to 1. It is important to note that the dynamics of parallel
Ising are not exactly identical to algorithm 1 as parallel Ising allows for the value of
multiple particles to flip from one time-step to the next.

2.2.5 Potts

Introduced by Renfrey Potts in 1951, the Potts model generalizes the Ising model
to multiple states. Instead of having spin up (+1) or down (-1) a particle may have
spin {1, 2, ..., q} for q ∈ N. As in Ising, the value of the Hamiltonian fluctuates based
on how many neighboring particle pairs have matching spins. In the Potts model
the Hamiltonian H becomes

H(σ) = −J
∑

(u,v)∈E

δ(σu, σv)− h
∑
u∈V

σu (2.30)

where δ(σu, σv) = 1 if σu = σv and 0 otherwise. The distribution π given by equation
2.15 is unchanged and only a small modification is made to algorithm 1.

15

Algorithm 2 PottsMCMC

Initialize σi i.i.d. for i ∈ V .
for s = 1, 2, ..., S do

Choose k ∈ {1, ..., N} uniformly.
Choose ` uniformly from from {1, ..., q} \ {σk}.
Let τj = σj for all j 6= k and τk = `.
Let σ = τ with probability min {1, π(τ)/π(σ)}.

end for
return σ

In the Potts model it is still feasible to compute π(τ)/π(σ) = e−β(H(τ)−H(σ)) when
τj = σj for all j 6= k as

H(τ)−H(σ) = −J
∑
v∈∂k

(δ(σu, τk)− δ(σu, σk))− h (τk − σk) . (2.31)

The interacting particle system analogous to algorithm 2, which we denote parallel
Potts, is nearly identical to 2.29. The transition probabilities for xi(t) 6= xi(t − 1)
are now

P (Xi(t) = xi(t) | Xi(t− 1) = xi(t− 1)) =
1

N(q − 1)
min {exp (−βH∗) , 1} (2.32)

where

H∗ =− J
∑
j∈∂i

δ(Xj(t− 1), xi(t))− δ(Xj(t− 1), xi(t− 1))

− h (xi(t)− xi(t− 1)) .

(2.33)

We may then account for the case of xi(t) = xi(t − 1) since the total probability
must sum to 1.

2.3 Conditional Independence and the Double Boundary

Lacker, Ramanan, and Wu present in [11] the theoretical result which is the corner-
stone for the development of our local recursions. They show that for an interacting
particle system with interaction network G = (V , E) and any set A ⊆ V , XT

A is
conditionally independent of all other particles given its double boundary. Formally,

XT
A ⊥⊥ XT

V\(A∪∂2A) | XT
∂2A. (2.34)

where XT
A = (XA(t))t≤T,t∈T denotes the full trajectory of A and ∂2A is the double

boundary of A. The double boundary includes not only the neighbors of A but also
the neighbors of the neighbors, defined as

∂2A = {v ∈ V \ A : there exists a path from u ∈ A to v of length 1 or 2} (2.35)

16

and is illustrated by figure 10.

A

Double Boundary

Figure 10: The Double Boundary ∂2A on a Lattice Graph

It is shown in [11] that equation 2.34 holds in discrete time, continuous time, and for
diffusions. It is also shown that 2.34 holds even for non-finite interaction networks.
Though a full proof is beyond the scope of this report, we may follow their techniques
to provide a proof in the discrete time case where T = N and the interaction graph
is finite.

For the remainder of this section we assume T = N and |V| <∞. We begin with the
remark that in general, interacting particle systems need not obey the spatial Markov
property, which requires conditional independence given the single boundary.

Lemma 2.2. For a general interacting particle system, both the time marginals
Xi(t) and the complete trajectories XT

i = (Xi(0), Xi(1), ..., Xi(T)) need not obey
the spatial Markov property introduced in equation 2.2.

Proof. A full and detailed counterexample may be found in the appendix, though
we present a short argument here to provide intuition.

Consider four adjacent particles i, j, k, l on a line graph with as depicted by figure
11.

17

i j k

i1
j1 k1

i0 j0 k0 t = 0

t = 1

l

l1

l1

Figure 11
Four Particles on a Line Graph

Now consider the exclusion process on a line graph. If particle b has left neighbor a
and right neighbor c then Xb(t) = XOR(Xa(t− 1), Xc(t− 1)). Moreover we consider
initial conditions {Xv(0)}v∈V ∼ i.i.d. Bernoulli(0.5). The spatial Markov property
would imply that XT

j is conditionally independent of XT
l given XT

i , X
T
k . However, if

we know that Xj(0) = 0 and Xk(1) = 1 then it must be true that Xl(0) = 1, and so
we do not have conditional independence.

We now discuss the joint distribution of XT = (Xi(t))i∈V,t≤T .

Lemma 2.3. For any discrete time, finite interacting particle system with indepen-
dent initial conditions,

P(XT = xT) =
∏
i∈V

(
µ0
i (xi(0))

T∏
t=1

µti(xi(t), xi(t− 1), x∂i(t− 1))

)
(2.36)

for some set of functions {µti}i∈V,t∈T.

Proof. From the Markov property we may immediately obtain the factorization

P(XT = xT) = P(X(0) = x(0))
T∏
t=1

P (X(t) = x(t) | X(t− 1) = x(t− 1)) (2.37)

and using the assumed independence of {Xi(0)}i∈V we may write

P(X(0) = x(0)) =
∏
i∈V

µ0
i (xi(0)) (2.38)

where µ0
i (xi(0)) = P(Xi(0) = xi(0)). We now focus our attention on the term

P (X(t) = x(t) | X(t− 1) = x(t− 1)) . (2.39)

In order to simplify equation 2.39 we first show that

Xi(t) ⊥⊥ Xj(t) | X(t− 1). (2.40)

Recall that Xi(t) = f(Xi(t − 1), X∂i(t − 1), ξi(t)) for some measurable function f
taking values in a finite space and therefore

P(Xi(t) = u | X(t− 1) = x) = P(ξi(t) ∈ ∆(u, xi, x∂i)) (2.41)

18

for ∆(u, xi, x∂i) defined as

∆(u, xi, x∂i) = {r ∈ R : f(xi, x∂i , r) = u} (2.42)

It follows that

P (Xi(t) = u,Xj(t) = v | X(t− 1) = x) (2.43)

= P(ξi(t) ∈ ∆(u, xi, x∂i), ξj(t) ∈ ∆(v, xj, x∂j)) (2.44)

= P(ξi(t) ∈ ∆(u, xi, x∂i))P(ξj(t) ∈ ∆(v, xj, x∂j)) (2.45)

= P(Xi(t) = u | X(t− 1) = x)P(Xj(t) = v | X(t− 1) = x) (2.46)

and so Xi(t) ⊥⊥ Xj(t) | X(t− 1). In 2.45 we use that ξi(t) and ξj(t) are independent.
Finally, we note that

P(Xi(t) = u | X(t− 1) = x) (2.47)

= P(ξi(t) ∈ ∆(u, xi, x∂i)) (2.48)

= P(Xi(t) = u | Xi(t− 1) = xi, X∂i(t− 1) = x∂i) (2.49)

which implies that Xi(t) ⊥⊥ XV\(i∪∂i)(t− 1) | X∂i(t− 1). We may then define

µti(xi(t), xi(t− 1), x∂i(t− 1)) = P (ξi(t) ∈ ∆(xi(t), xi(t− 1), x∂i(t− 1))) (2.50)

and conclude that

P(XT = xT) =
∏
i∈V

(
µ0
i (xi(0))

T∏
t=1

µti(xi(t), xi(t− 1), x∂i(t− 1))

)
. (2.51)

Using the factorization above we are now able to prove a special case of equation
2.34.

Lemma 2.4. Equation 2.34 holds for any discrete time, finite interacting parti-
cle system with independent initial conditions. Equivalently, for any A ⊆ V and
configuration xT with non-zero probability,

P(XT
A = xTA|XT

V\A = xTV\A) = P(XT
A = xTA|XT

∂2A = xT∂2A). (2.52)

Proof. Using that P(XT
A = xTA) > 0 we write

P(XT = xT |XT
V\A = xTV\A) (2.53)

=
P(XT

A = xTA, X
T
V\A = xTV\A)∑

yTA
P(XT

A = yTA, X
T
V\A = xTV\A)

(2.54)

19

For simplicity we will rewrite equation 2.54 as

P(XT
A = xTA, X

T
V\A = xTV\A)∑

xTA
P(XT

A = xTA, X
T
V\A = xTV\A)

(2.55)

where it is assumed that in the denominator all other terms are held fix but the term
being summed out.

We now return to the factorization given in Lemma 2.3 which we may apply to both
the numerator and denominator in equation 2.55. However, we first note that we
may extend Lemma 2.3 to further to decompose P(XT = xT) into two terms as

∏
i∈V

(
µ0
i (xi(0))

T∏
t=1

µti(xi(t), xi(t− 1), x∂i(t− 1))

)

=
∏

i∈A∪∂A

(
µ0
i (xi(0))

T∏
t=1

µti(xi(t), xi(t− 1), x∂i(t− 1))

)
∏

i∈V\(A∪∂A)

(
µ0
i (xi(0))

T∏
t=1

µti(xi(t), xi(t− 1), x∂i(t− 1))

) (2.56)

The latter term in equation 2.56 does not depend on xTA and so can be factored out of
the summation in the denominator and cancelled out from the numerator of equation
2.55. We may then rewrite equation 2.55 as∏

i∈A∪∂A

(
µ0
i (xi(0))

∏T
t=1 µ

t
i(xi(t), xi(t− 1), x∂i(t− 1))

)
∑

xTA

∏
i∈A∪∂A

(
µ0
i (xi(0))

∏T
t=1 µ

t
i(xi(t), xi(t− 1), x∂i(t− 1))

) (2.57)

Finally, we multiply both sides of equation 2.57 by

∑
xT
V\(A∪∂2A)

∏
i∈V\(A∪∂A)

(
µ0
i (xi(0))

T∏
t=1

µti(xi(t), xi(t− 1), x∂i(t− 1))

)
(2.58)

and we may bring the product
∏

i∈A∪∂A(...) inside the sum as it does not contain any
terms which depend on xTV\(A∪∂2A). Equation 2.57 then simplifies to∑

xT
V\(A∪∂2A)

∏
i∈V

(
µ0
i (xi(0))

∏T
t=1 µ

t
i(xi(t), xi(t− 1), x∂i(t− 1))

)
∑

xTA

∑
xT
V\(A∪∂2A)

∏
i∈V

(
µ0
i (xi(0))

∏T
t=1 µ

t
i(xi(t), xi(t− 1), x∂i(t− 1))

) (2.59)

=

∑
xT
V\(A∪∂2A)

P
(
XT
A = xTA, X

T
∂2A = xT∂2A, X

T
V\(A∪∂2A) = xTV\(A∪∂2A)

)
∑

xTA

∑
xT
V\(A∪∂2A)

P
(
XT
A = xTA, X

T
∂2A = xT∂2A, X

T
V\(A∪∂2A) = xTV\(A∪∂2A)

) (2.60)

20

=
P(XT

A = xTA, X
T
∂2A = xT∂2A)

P(XT
∂2A = xT∂2A)

= P(XT
A = xTA|XT

∂2A = xT∂2A) (2.61)

as needed.

We conclude this section with a Lemma for interacting particle systems analogous
to Lemma 2.1 for graphical models.

Lemma 2.5. Consider an interacting particle system with interaction network G =
(V , E) where A,B and S are a disjoint partition of V . If every path

{(u0, u1), (u1, u2), ..., (uk−1, uk)} ⊆ E
with u0 ∈ A, uk ∈ B contains at least two particles uj ∈ S then XT

A is conditionally
independent of XT

B given XT
S .

Proof. This follows immediately from ∂2A ∩ B = ∅ and is nearly equivalent to the
proof of Lemma 2.1. See Appendix for details.

3 Existing Approximations

In this section we discuss existing approximations for characterizing particle dynam-
ics.

3.1 Mean Field Approximation

3.1.1 Description

The so called mean field approximation is widely used for understanding the dy-
namics of a typical particle. In 1984 it was shown by Oelschlger in [17] that this
approximation is exact as the population size tends to infinity if the interaction
network is complete. More recently in [4] it was shown that the mean field approx-
imation is asymptotically accurate for sequences of dense graphs where the degree
of each particle tends to infinity. However, the mean field approximation is fairly
inaccurate when the interaction network is sparse.

In the mean field approximation it is assumed that the neighbors of particle i are
independent copies of i. Recall that for a discrete time interacting particle system,
particle i evolves based on its own state and the state of its neighbors as

Xi(t) = f(Xi(t− 1), X∂i(t− 1), ξi(t)). (3.1)

However, in the mean field approximation particle i updates according to its own
state and its Law as

Xi(t) = f̃(Xi(t− 1),Law(Xi(t− 1)), ξi(t)) (3.2)

21

where the neighbors of i at time t are approximated by independent samples from
Law(Xi(t− 1)). Formally if i has d neighbors then

f̃(Xi(t− 1),Law(Xi(t− 1)), ξi(t))

= f(Xi(t− 1),
[
Y1, ..., Yd

]
, ξi(t))

(3.3)

where {Yi}di=1 are i.i.d Law(Xi(t− 1)).

In continuous time equation 3.2 simply becomes

Xi(t) = f̃(Xi(t−),Law(Xi(t−)), ξi(t)). (3.4)

An analogous formulation of the mean field approximation as given by equation 3.2
is presented below.

P(Xi(t) = v | Xi(t− 1) = u) = Q̃(v, u,Law(Xi(t− 1))) (3.5)

As before we have that Q̃ implicitly assumes that the neighbors of i at t and inde-
pendent samples from Law(Xi(t)). The equivalence of equations 3.2 and 3.5 follows
from Remark 2.1 in which g is introduced. Formally, if i has d neighbors then

Q̃(v, u,Law(Xi(t− 1))) = g(u, v,
[
Y1, ..., Yd

]
) (3.6)

where {Yi}di=1 are i.i.d Law(Xi(t− 1)).

Recall that in the contact process described by Section 2.2.2 a particle i transitions
from Susceptible (0) to Infected (1) based on the ratio of infected neighbors. In
discrete time we had

P(Xi(t) = 1 | Xi(t− 1) = 0) =
1

d

∑
j∈∂i

Xj(t− 1). (3.7)

When Xj(t−1) is approximated by an independent sample from the law of Xi(t−1),
as in the mean field approximation, equation 3.7 becomes

P(Xi(t) = 1 | Xi(t− 1) = 0) = ht−1(1) (3.8)

where ht−1 = Law(Xi(t− 1)) and so ht−1(1) = P(Xi(t− 1) = 1). Consequenlty,

Q̃(1, 0, ht−1) = ht−1(1). (3.9)

3.1.2 Implementation

We now discuss an implementation of the mean field approximation for discrete time
interacting particle systems.

22

Given that Xi(0) ∼ ν we may use Q̃ to obtain hT = Law(Xi(T)) under the as-
sumptions of the mean field approximation. This dynamic programming algorithm
is given below.

Algorithm 3 MeanFieldApproximation(Q̃, ν, T)

h0 = ν
for t = 1, 2, ..., T do

for v ∈ X do
ht(v) =

∑
u∈X Q̃(v, u, ht−1)ht−1(u)

end for
end for
return hT

We now aim to prove that hT is equal to Law(Xi(T)) under the assumptions of the
mean field approximation.

Lemma 3.1 hT = Law(Xi(T)) under the assumption of equation 3.5.

Proof. We may prove our claim by induction. When T = 0 we have that h0 = ν and
ν = Law(Xi(0)) as needed. Now assume that ht = Law(Xi(t)) for some t ≥ 0 and
observe that

ht+1(v) =
∑
u∈X

Q̃(v, u, ht)ht(u) (3.10)

=
∑
u∈X

P(Xi(t+ 1) = v | Xi(t) = u)P(Xi(t) = u) (3.11)

=
∑
u∈X

P(Xi(t+ 1) = v, Xi(t) = u) (3.12)

= P(Xi(t+ 1) = v) (3.13)

and therefore ht+1 = Law(Xi(t+ 1)).

We now showcase some results of algorithm 3. We first consider the contact process
on a complete graph as n (the number of particles) grows large. As illustrated
by figure 12, the mean field approximation is more accurate with larger n. The
simulations are run with the parameters P(Xi(0) = 0) = 0.9, p = 0.9, and q = 0.05.
We plot P(Xi(t) = 0) for different t, using 104 samples to estimate the probability.

23

Figure 12: Mean Field Approximation and Full Simulation for the Contact Process

It is important to note that in generating figure 12 we chose parameters which accen-
tuate the discrepancy between different values of n. By changing these parameters
slightly the difference is less notable. We generate figure 13 by modifying the simu-
lation in 12 so that the initial condition is P(Xi(0) = 0) = 0.5.

Figure 13: Mean Field Approximation and Full Simulation for the Contact Process
with Different Initial Conditions

We now consider the contact process on d-Regular tree of fixed depth. A d-regular
tree is a tree graph where each non-leaf particle as d neighbors. As illustrated by the
figure below, the mean field approximation grows more accurate with larger d. The

24

simulations are run with the parameters P(Xi(0) = 0) = 0.9, p = 0.9, and q = 0.05.
We plot P(Xi(t) = 0) for different t, using 104 samples to estimate the probability.

Figure 14: Mean Field Approximation and Full Simulation for the Contact Process
with Different Initial Conditions

In summary, computing approximate marginal distributions is computationally effi-
cient and, in many cases, highly accurate with the mean field approximation. How-
ever, for sparse graphs the mean field approximation may be very inaccurate.

3.2 Cavity Methods

Various forms of the cavity method have emerged independently throughout the past
century. Most notably, in physics the cavity method dates back to 1935 when it was
used by Bethe to compute approximate marginals for the Ising model on a lattice
[3]. In the 1980s it was rediscovered by Pearl as a procedure for inference in acyclic
Bayesian networks [18]. More recently it was used in [13] and [2] to study dynamic
systems. The cavity method may also be referred to as belief propagation or the
sum-product algorithm.

3.2.1 Cavity Method for Graphical Models

We begin with an introduction of the cavity method in its simplest form. Namely,
we consider the problem of performing statistical inference of graphical models. We

25

follow [20, Section 2.4.1] and show that we may compute exact marginals for every
node using the cavity method for a Markov random field which respects a finite tree.

Consider a Markov random field P which respects a tree graph G with n nodes. By
the Hammersly-Clifford theorem of [8] we may factor

µ(x1, ..., xn) = P(X1 = x1, ..., Xn = xn) (3.14)

as

µ(x1, ..., xn) =
1

Z

∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj) (3.15)

for some Z, {ψi}i∈V , {ψi,j}(i,j)∈E .

In the cavity method we wish to compute marginal distribution µi(xi) = P(Xi = xi)
for i ∈ V . To do so we introduce messages which are passed along each edge. The
message from node j to i, denoted as mj→i(xi), is the belief of j that i is in state xi.
We may form an iterative algorithm to obtain mj→i(xi) as follows.

1. Initialize m0
j→i(xi) = m0

i→j(xj) = 1 for each (i, j) ∈ E , xj ∈ X .

2. For t = 1, 2, ... compute mt
j→i(xi) by

mt
j→i(xi) = κ

∑
xj

ψi,j(xi, xj)ψj(xj)
∏

k∈∂j\{i}

mt−1
k→j(xj) (3.16)

for κ such that
∑

xi
mt
j→i(xi) = 1.

3. Once mt
j→i(xi) has converged to mj→i(xi), compute the marginal µ(xi) as

µi(xi) = κψi(xi)
∏
j∈∂i

mt
j→i(xi). (3.17)

for κ such that
∑

xi
µi(xi) = 1. Note that when mt

j→i(xi) has converged we
omit the superscript t.

This algorithm is often called the sum-product algorithm.

Lemma 3.2. The sum-product algorithm for a Markov random field which respects
a tree with n nodes converges so that equation 3.17 is correct in at most n iterations.

Proof. We proceed by induction on n. By equation 3.15 a tree with only one node
has distribution µ(x1) = κψ1(x1). Since there are no edges there are no messages and
equation 3.17 is immediately correct. Now assume that the sum-product algorithm
on a tree with n − 1 nodes converges so that the marginals are correct in at most
n− 1 iterations.

26

Consider any tree G with n nodes 1, ..., n. Every tree contains at least one leaf and so
without loss of generality we label a leaf n. Now let i be the single node with an edge
to n. Since n has only one neighbor, the message from n to i converges immediately
to

mn→i(xi) = κn
∑
xn

ψi,n(xi, xn)ψn(xn) (3.18)

for some normalization constant κn. We now consider nodes 1, ..., n− 1 and observe

P(X1 = x1, ..., Xn−1 = xn−1) (3.19)

= µ\n(x1, ..., xn−1) (3.20)

=
∑
xn

1

Z

∏
i∈V

ψi(xi)
∏

(i,j)∈E

ψi,j(xi, xj) (3.21)

=
1

Z̃

(∑
xn

κnψi,n(xi, xn)ψn(xn)

) ∏
i∈V\{n}

ψi(xi)
∏

(i,j)∈E\{(i,n)}

ψi,j(xi, xj) (3.22)

=
1

Z̃
mn→i(xi)

∏
i∈V\{n}

ψi(xi)
∏

(i,j)∈E\{(i,n)}

ψi,j(xi, xj) (3.23)

for some normalization constant Z̃. When we remove a leaf from a tree we are still
left with a tree, and so by assumption the sum-product algorithm will converge to
the correct marginals for nodes 1, ..., n−1 in at most n−1 iterations. We are now left
to show that after our final iteration we will have correctly computed the marginal
of node n. Using the spatial Markov property we may decompose µn(xn) as

µn(xn) =
∑
xi

µn|i(xn|xi)µ1(xi) (3.24)

where µn|i(xn|xi) = P(Xn = xn | Xi = xi) may be further decomposed as follows.

µn|i(xn|xi) =
µi,n(xi, xn)∑
xn
µi,n(xi, xn)

(3.25)

=
ψn(xn)ψi,n(xi, xn)∑
xn
ψn(xn)ψi,n(xi, xn)

(3.26)

∝ ψn(xn)ψi,n(xi, xn)

mn→i(xi)
(3.27)

Additionally by our inductive assumption the marginal on node i is correct and so

µi(xi) ∝ ψi(xi)mn→i(xi)
∏

k∈∂i\{n}

mk→i(xi) (3.28)

by equation 3.17. Finally we observe that from equations 3.27 and 3.28 we have

µn(xn) =
∑
xi

µn|i(xn|xi)µ1(xi) (3.29)

27

∝
∑
xi

ψi(xi)ψn(xn)ψi,n(xi, xn)
∏

k∈∂i\{n}

mk→i(xi) (3.30)

∝ ψn(xn)mi→n(xn) (3.31)

and so equation 3.17 is correct as needed.

The sum-product algorithm is also used when the graph is no longer a tree. However,
when the graph is no longer a tree the marginals may not be exact.

3.2.2 Dynamic Cavity Method

In recent papers by Aurell and Mahmoudi [1, 2] and Lokhov [13, 14] the cavity
method has been extended to finite, discrete time, interacting particle systems.
Kanoria and Montanari provide a similar method in [9], though it is more spe-
cific to majority dynamics. The so-called dynamic cavity method is similar to the
sum-product algorithm introduced above. However, the messages are now passed
between pairs of particle trajectories. To discuss the dynamic cavity method we first
recall the factorization of a finite discrete time interacting particle system given by
Lemma 2.3.

P(XT = xT) =
∏
i∈V

(
p0
i (xi(0))

T∏
t=1

wi(xi(t), xi(t− 1), x∂i(t− 1))

)
(3.32)

Now consider a message mi→j(x
T
i | xTj), i, j ∈ E defined as the probability that

particle i has trajectory xTi given the trajectory xtj of j in the transformed cavity
graph G\j where node j has beed removed. As emphasized in [9], mi→j(x

T
i | xTj) is

not a conditional probability. Formally the messages satisfy the recursions

mi→j(x
T
i | xTj) =

1

Zij
p0
i (xi(0))

∑
xT
∂i\j

[
T∏
t=1

wi(xi(t), xi(t− 1), x∂i(t− 1))

]

∗
∏
k∈∂i\j

mk→i(x
T
k | xTi).

(3.33)

As each message contains an exponential number of components, iterating 3.33 until
convergence has exponential computational complexity [14]. Equation 3.33 is anal-
ogous to equation (3) in [14] and (6) in [9]. However, (3) contains a small typo
concerning the initial conditions.

In Appendix B of [9] the authors show that equation 3.33 is exact in the case where
the interaction network is a tree and j is a leaf with neighbor i. Though much of [9]
is focused directly on majority dynamics, [14] and [2] proceed by computing marginal

28

distributions. Specifically, in equation (4) of [14] the marginal µi for the trajectory
of particle i may is given as

µi(x
T
i) =

1

Zi
p0
i (xi(0))

∑
xT∂i

[
T∏
t=1

wi(xi(t), xi(t− 1), x∂i(t− 1))

]

∗
∏
k∈∂i

mk→i(x
T
k | xTi).

(3.34)

Lokhov claims that equation 3.34 is exact when G is a tree. We suggest, however,
that even in the case where the graph is a tree equation 3.34 need not exactly hold.
This follows from Lemma 2.2 in which we show that the neighbors of particle i are
not independent in the cavity graph where the trajectory xTi is given.

3.2.3 Filling in the Dynamic Cavity Method

We now present a novel extension of the dynamic cavity method which does allow
for the exact computation of marginal distributions when the interaction network is
acyclic and satisfies the following constraint: There exists a disjoint partition of the
particles {Ai}i∈I where ∂Ai ∩Aj = ∅ implies that ∂2Ai ∩Aj = ∅. In other words, if
Ai to Aj are not connected by an edge then there does not exist a path from Ai to
Aj of length two. Additionally we let

∆i = {j : Ai and Aj are connected by an edge} (3.35)

We may always partition a tree in this way and are able to find partitions for some
non-tree graphs as well.

We now consider a message mi→j(x
T
Ai | x

T
Aj), for Ai,Aj connected by an edge. The

message mi→j(x
T
Ai | x

T
Aj) is defined as the probability that particlesAi have trajectory

xTAi given the trajectory xTAj of particles Aj in the transformed cavity graph G\Aj
where particles Aj have beed removed. Formally the messages satisfy the recursions

mi→j(x
T
Ai | x

T
Aj) =

1

Zij

(∏
u∈Ai

p0
u(xu(0))

)

∗
∑
xTAj
j∈∆i

[
T∏
t=1

∏
u∈Ai

wu(xu(t), xu(t− 1), x∂u(t− 1))

]

∗
∏

k∈∆i\j

mk→i(x
T
Ak | x

T
Ai).

(3.36)

29

and we may then find marginal distributions over the local region Ai as

µAi(x
T
Ai) =

1

Zi

(∏
u∈Ai

p0
u(xu(0))

)

∗
∑
xTAj
j∈∆i

[
T∏
t=1

∏
u∈Ai

wu(xu(t), xu(t− 1), x∂u(t− 1))

]

∗
∏
k∈∆i

mk→i(x
T
Ak | x

T
Ai).

(3.37)

From µAi(x
T
Ai) we may further marginalize to obtain marginals for single particle

trajectories. Since the interaction network is acyclic, for any i, j ∈ ∆k we know from
Lemma 2.5 that the trajectories of Ai and Aj are independent in the cavity graph
where the trajectory for Ak is given.

We conclude by noting that in general the dynamic cavity method may only be used
for small graphs. Unlike our method in 4, the dynamic cavity method requires the
marginal to be calculated throughout the graph. Our method allows us to compute
marginals for a given local region. The computational complexity of the algorithm
we present in 4 does not depend on the number of particles in the overall graph, and
may even be applied when the number of particles is infinite.

3.3 Moment Approximations

The pair-approximation and other moment-closure methods are frequently used in
biology to increase the tractability of large interacting systems [6, 21]. Though
inexact, moment-closure methods may often be a good approximation.

3.3.1 Notation

We first present some notation which may be found in [6]. Given a graph Gs = (Vs, Es)
define Wi(t), Yi,j(t) and Z`,i,j(t) as follows.

• Wi(t) is the proportion of particles in state i at time t.

• Yi,j(t) is the proportion of connected particles in states (i, j) at time t.

• Z`,i,j(t) is the proportion of connected triplets in states (`, i, j) at time t.

When Gs is the complete graph then

Yi,j(t) = Wi(t)Wj(t) (3.38)

30

as every two particles are connected by an edge.

Moreover, for any graph Gs, the pairwise approximation is given by

Z`,i,j(t) =
Yi,`(t)Yi,j(t)

Wi(t)
. (3.39)

3.3.2 The Power of Two Choices on Graphs: The Mean Field Approxi-
mation

We now return to the setting of load balancing on graphs, as discussed in [16, 6].
To build intuition for the pair-approximation we first present the mean field ODE.
We restate the model of load balancing as follows. Consider a graph of servers
Gs = (Vs, Es) where each server processes jobs in its queue with rate 1. Jobs arrive
at each server with a poisson rate λ and for each job arrival at server u1, u2 is chosen
uniformly from ∂u1. The job is then allocated to the server among u1, u2 with the
shortest queue (ties are broken at random).

We now consider the case where Gs is complete. We follow [6, Section 2.1] in deriving
an ODE. Let Pi(t) be the probability that a job arriving at a server with queue length
i will be allocated to that server.

Pi(t) =
Wi(t)

2︸ ︷︷ ︸
Neighbor chosen has i jobs as well.

+
∞∑

j=i+1

Wj(t)︸ ︷︷ ︸
Neighbor chosen has j > i jobs.

(3.40)

Using Pi we may obtain an infinite system of ODEs.

dWi

dt
= Wi+1︸ ︷︷ ︸

Exit from queue of length i+ 1.

− Wi1{i>0}︸ ︷︷ ︸
Exit from queue of length i.

+ 2λ

 1{i>0}Pi−1Wi−1︸ ︷︷ ︸
Entry to queue length i− 1.

− PiWi︸ ︷︷ ︸
Entry to queue length i.

 (3.41)

The system converges exactly to the ODE as the number of particles tends to infinity,
which follows from Kurtz’s theorem [16]. Formally we have that

Wi(t) = P(Xu(t) = i) (3.42)

where u is a typical server. In other words, the empirical law of the system converges
to the law of a typical server.

31

3.3.3 The Power of Two Choices on Graphs: the Pair-Approximation is
Accurate [6, Section 2.2]

We now follow [6, Section 2.2] in deriving an ODE for a graph where each node has
degree k. We denote Qi(t) as the probability that a job that arrives at a server with
i jobs is allocated to that server.

Qi(t) =

Yi,i(t)

2
+
∑∞

j=i+1 Yi,j(t)

Wi(t)
(3.43)

We divide by Wi(t) as we are given that one of the servers in the pair has i jobs.
We may consider instead the equivalent formulation where jobs are incident on each
edge (u1, u2) with rate λ and allocated to the server with the fewest job (ties broken
at random).

There are three ways in which Yi,j can evolve.

1. A job is served. We add to
dYi,j
dt

the term

Yi+1,j + Yi,j+1︸ ︷︷ ︸
Exit from a queue of length i+ 1 or j + 1.

− Yi,j1{i>0} − Yi,j1{j>0}︸ ︷︷ ︸
Exit from one queue of pair with jobs i, j.

(3.44)

2. A job arrives at a pair of servers with queue lengths (i−1, j), (i, j−1),
or (i, j). There are nk/2 edges and so a job arrives at each edge with rate 2λ/k.

We add to
dYi,j
dt

the term

2λ

k
(Yi−1,ja(i− 1, j) + Yi,j−1a(j − 1, i)− Yi,j) (3.45)

where a(x, y) = 1 is x < y, 1/2 if x = y, and 0 if x > y.

3. A job arrives at an edge incident to a server with i or j jobs. For a
pair of servers with queue length (i, j) a job will enter at a different edge and be
allocated to i with probability Rij(t) =

(
Zi,i,j(t)/2 +

∑∞
`=i+1 Z`,i,j(t)

)
/Yij(t).

Using the pair-approximation Ri,j(t) = Qi(t) and so we add the following term

to
dYi,j
dt

.

2λ(k − 1)

k

(
Qi−1Yi−1,j1{i>0} +Qj−1Yi,j−11{j>0} − (Qi +Qj)Yi,j

)
(3.46)

The factor of k − 1 arises each server has k neighbors.

dYi,j
dt

is then the addition of terms 3.44, 3.45 and 3.46. This equation is not exact and
has no known close form. However, Gast simulates the ODE to obtain very accurate
results.

32

4 Local Recursions

We now present our novel local approximations for the dynamics for a typical particle
building on the conditional independence result of Lacker, Ramanan, and Wu in [11].

In this section we will be considering a discrete time interacting particle system X =
{Xi(t)}t∈N,i∈V with interaction network G = (V , E). For certain local regions of parti-
cles A ⊆ V our algorithm will compute the joint distribution of XT

A = {Xi(t)}i∈A,t≤T .
We denote the joint distribution as JTA where

JTA(xTA) = P
(
XT
A = xTA

)
. (4.1)

In general, we refer to XT
A as the full trajectory of A. From the joint distribution we

may marginalize to obtain the distribution of a typical particle trajectory. The joint
distribution of a particle or region of particles is sufficient to fully characterize particle
dynamics. And so as N grows large, perhaps infinite, under certain assumptions
we will still be able to fully characterize the dynamics of a typical particle. We
cannot rely on computations of the full system as N grows large, as they become
computationally infeasible.

This section is organized as follows. First we discuss our local recursions when G is a
ring graph. For a ring graph we first present a simpler form of our algorithm which
allows us to sample from JTA. Next we provide our local recursions for the ring graph
which will allow us to compute the full joint distribution.

We then present and prove the local recursions for a more general class of graphs,
and motivate a fast approximation we call the τ -approximation.

4.1 Ring

Consider the case where the interaction network is a ring graph of N particles.

Figure 15: A Ring Graph with 8 Particles

33

For the ring graph we aim to characterize the dynamics of three consecutive particles.
Without loss of generality we label these particles A = {−1, 0, 1}, as illustrated by
figure 16.

∂A-2

-1

0

1

2

A

Figure 16: A = {−1, 0, 1}

The choice to consider three consecutive particles will soon become clear.

4.1.1 The Local Sampling Algorithm on a Ring

We first provide an algorithm to sample from JTA. We present this algorithm by
induction on time T . Since the initial conditions {Xi(0)}i∈V are i.i.d. we may easily
sample J0

A. Assuming that we may sample from J tA for t ≥ 0 we will describe the
process for sampling xt+1

A = (xA(0), ..., xA(t+ 1)) from J t+1
A .

We account for the value of xA at times 0, 1, ..., t by invoking our assumption to
sample xtA = (xA(0), ..., xA(t)) from J tA. We are now left only to sample for the final
time step.

Since a particle updates according to its own state and the state of its neighbors,
we may easily obtain a sample for the final time step if we can sample the state
of particles ∂A = {−2, 2} at time t. To obtain samples for the state of particles
{−2, 2} at time t we use the property of conditional independence given the double
boundary.

As the problem is symmetric we only describe in detail the process of sampling the
state of particle −2 at time t. Formally, we need to sample state of particle −2
at time t conditioned on the state of particles {−1, 0, 1} at times 0, 1, ..., t. By the
property of conditional independence given the double boundary (specifically Lemma
2.5) we may ignore particle 1 as it is outside the double boundary of −2. Instead we
need only sample from the state of particle −2 at time t conditioned on the state of
particles −1 and 0 at times 0, 1, ..., t. We use now that all particles are identical, and
so the state of particle −2 conditioned on the state of particles −1 and 0 at times

34

0, 1..., t is equal in distribution to the state of particle −1 conditioned on the state of
particles 0 and 1 at times 0, 1, ..., t. So we may repeatedly sample ytA from J tA until
we find that xt−1 = yt0 and xt0 = yt1, in which case we let y−1(t) be our sample for
particle −2 at time t.

In algorithm 4 we provide pseudocode for the local sampling process we have de-
scribed above. The algorithm returns a sample from JTA given the following argu-
ments.

• Time T up to which the algorithm should be run.

• Update function f where Xi(t+ 1) = f(Xi(t), X∂i(t), ξi(t+ 1)).

• Initial conditions ν where {xi(0)} i.i.d. ν. It is assumed we can sample from ν
in constant time.

• Independent random variables ξ = {ξi(t)}s≤t. It is assumed we can sample
from Law(ξi(t)) in constant time.

35

Algorithm 4 LocalRingSample(T, f, ν, ξ)

Sample x−1(0), x0(0), x1(0) from ν.

for t = 0, 1, ..., T − 1 do

{Update the middle particle}
Sample r0(t+ 1) from (ξ0(t+ 1))
x0(t+ 1) = f

(
x0(t),

[
x−1(t), x1(t)

]
, r0(t+ 1)

)
{Update the left particle}
while {y0(s), y1(s)}s≤t 6= {x−1(s), x0(s)}s≤t do
{y−1, y0(s), y1(s)} = LocalRingSample(t, f, ν, ξ)

end while
Sample r−1(t+ 1) from Law(ξ−1(t+ 1))
x−1(t+ 1) = f

(
x−1(t),

[
y−1(t), x0(t)

]
, r−1(t+ 1)

)
{Update the right particle}
while {y−1(s), y0(s)}s≤t 6= {x0(s), x1(s)}s≤t do
{y−1, y0(s), y1(s)} = LocalRingSample(t, f, ν, ξ)

end while
Sample r1(t+ 1) from Law(ξ1(t+ 1))
x1(t+ 1) = f

(
x1(t),

[
x0(t), y1(t)

]
, r1(t+ 1)

)
end for
return {x−1(s), x0(s), x1(s)}s≤T

4.1.2 Local Recursions on a Ring

We recognize two main flaws in algorithm 4. Since we may only sample from JTA we
need to run the algorithm many times to understand particle dynamics. Additionally,
the algorithm is not deterministic and so the number of recursive calls we make may
vary. We aim to remedy the shortcomings of algorithm 4 by presenting deterministic
recursions for the full joint distribution JTA. This section is meant to build intuition
for the more general local recursions which we present formally and prove in Section
4.2.

Instead of an update function f we now consider g where

P(Xi(t) = v | Xi(t− 1) = u) = g(v, u,X∂i(t− 1)). (4.2)

As we discuss in Remark 2.1 these two formulations are equivalent.

36

To explain our local recursions it is first necessary to introduce ct` and ctr, given by

ct` (x−1(t), {x0(t), x1(t)}s≤t)
= P (X−1(t) = x−1(t) | {X0(t), X1(t)}s≤t = {x0(t), x1(t)}s≤t)

(4.3)

and

ctr (x1(t), {x−1(t), x0(t)}s≤t)
= P (X1(t) = x1(t) | {X−1(t), X0(t)}s≤t = {x−1(t), x0(t)}s≤t)

(4.4)

defined only when the event on which we condition has positive probability.

We may think of ct` and ctr as the left and right conditional distributions respectively.
The probability that particle -1 is in a given state at time t conditioned on the state
of particles 0 and 1 at times 0, 1, ..., t is given by ct`. Likewise ctr gives the probability
that particle 1 is in a given state at time t conditioned on the state of particles -1
and 0 at times 0, 1, ..., t.

We now proceed by induction on J tA, ct` and ctr, as illustrated by figure 17. We are
given J0

A by the initial conditions. We then show that

1. given J tA we may compute ct` and ctr and

2. given J tA, ct` and ctr we may compute J t+1
A .

c0

J0

Given by Initial Conditions

J1

c1 ct

Jt Jt+1

ct+1

Figure 17: Induction on J t and ct.

It is immediate that we may compute ct` and ctr from J tA. For example we have

ct` (x−1(t), {x0(t), x1(t)}s≤t)

=

∑
{y−1(s)}s<t, y−1(t)=x−1(t) J

t
A ({y−1(t), x0(t), x1(t)}s≤t)∑

{y−1(s)}s≤t J
t
A ({y−1(t), x0(t), x1(t)}s≤t)

(4.5)

37

for ct`. And so the challenge that remains is to compute J t+1
A from J tA, c

t
`, c

t
r. We

observe that

J t+1
A
(
xt+1
A
)

= P
(
X t+1
A = xt+1

A
)

(4.6)

= P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA

)
P
(
X t
A = xtA

)
. (4.7)

P (X t
A = xtA) is simply J tA (xtA) which we are assuming that we have. Therefore, we

need only calculate P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA

)
. We notice that

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA

)
(4.8)

=
∑
y−2,y2

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA, X−2(t) = y−2, X2(t) = y2

)
∗ P

(
X−2(t) = y−2, X2(t) = y2

∣∣∣ ~X t
A = ~xtA

) (4.9)

and now examine the two terms in the summation above separately. We simplify the
first term as

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA, X−2(t) = y−2, X2(t) = y2

)
(4.10)

= g
(
x−1(t+ 1), x−1(t),

[
y−2, x0(t)

])
∗ g
(
x0(t+ 1), x0(t),

[
x−1(t), x1(t)

])
∗ g
(
x1(t+ 1), x1(t),

[
x0(t), y2

]) (4.11)

Finally we use conditional independence given the double boundary (specifically
Lemma 2.5) to simplify the latter term.

P
(
X−2(t) = y−2, X2(t) = y2

∣∣∣ XT
A = xTA

)
(4.12)

= P
(
X−2(t) = y−2

∣∣∣ XT
A = xTA

)
∗ P

(
X2(t) = y2

∣∣∣ XT
A = xTA

)
(4.13)

= P
(
X−2(t) = y−2

∣∣∣ XT
−1 = xT−1, X

T
0 = xT0

)
∗ P

(
X2(t) = y2

∣∣∣ XT
0 = xT0 , X

T
1 = xT1

) (4.14)

= ct` (y−2, {x−1(t), x0(t)}s≤t) ∗ ctr (y2, {x0(t), x1(t)}s≤t) (4.15)

So in summary we have

J t+1
A
(
xt+1
A
)

= J tA
(
xtA
) ∑
y−2,y2

ct` (y−2, {x−1(t), x0(t)}s≤t) ∗ ctr (y2, {x0(t), x1(t)}s≤t)

∗ g
(
x−1(t+ 1), x−1(t),

[
y−2, x0(t)

])
∗ g
(
x0(t+ 1), x0(t),

[
x−1(t), x1(t)

])
∗ g
(
x1(t+ 1), x1(t),

[
x0(t), y2

])
(4.16)

38

and we may indeed compute J t+1
A from J tA, c

t
` and ctr.

Finally we note that to avoid repeated computations we may factor equation 4.16 as

J t+1
A
(
xt+1
A
)

= J tA
(
xtA
)
g
(
x0(t+ 1), x0(t),

[
x−1(t), x1(t)

])
∗

(∑
y−2

g
(
x−1(t+ 1), x−1(t),

[
y−2, x0(t)

])
∗ ct` (y−2, {x−1(t), x0(t)}s≤t)

)

∗

(∑
y2

g
(
x1(t+ 1), x1(t),

[
x0(t), y2

])
∗ ctr (y2, {x0(t), x1(t)}s≤t)

)
.

(4.17)

4.2 Local Recursions for More General Graphs

We now present our local recursions for discrete time interacting particle systems
on a more general class of graphs. We consider a discrete time interacting particle
system with interaction network G = (V , E). We give the joint distribution for a
local region A ⊆ V when the following properties hold.

(A1) All particles are identical. And so for any two isomorphic subgraphs GI and
GH we have that

XT
I

d
= XT

H. (4.18)

for all T .

Note that for any set I ⊆ V we let GI denote the subgraph consisting of
particles in the set I. We say that two subgraphs GI and GH are isomorphic
(GI ' GH) if there exists a bijection φ : I → H such that

(u, v) ∈ GI ⇐⇒ (φ(u), φ(v)) ∈ GH. (4.19)

(A2) There exists a disjoint partition A1, ...,Ak of A, and an associated disjoint
parition B1, ...,Bk of B = ∂A (where Bi may be empty) satisfying ∂Ai∩Bj = ∅
for each i 6= j.

And so particles in Ai update only according to the state of particles in Bi∪A.

(A3) For each non-empty Bi and Bj with i 6= j , every path

{(u0, u1), (u1, u2), ..., (uk−1, uk)} ⊆ E

with u0 ∈ Bi, uk ∈ Bj contains at least two particles uj ∈ A.

And so by Lemma 2.5 we have that XT
Bi ⊥⊥ XT

Bj | X
T
A.

39

(A4) For each Bi 6= ∅ we let Di denote the overlap between the double boundary
of Bi and A. Formally, Di = ∂2Bi ∩ A. For each Bi 6= ∅ there must exist
Ci,Ri ⊆ A such that GRi ' GBi , GCi ' GDi , and GRi∪Ci ' GBi∪Di .

In our recursions we will be using Ri as a substitute for Bi.

Once again we denote the joint distribution for the local region A as

JTA(xTA) = P
(
XT
A = xTA

)
. (4.20)

We now have a family of conditional distributions cTi for i = 1, ..., k where

cTi
(
xBi(T), xTDi

)
= P

(
XBi(T) = xBi(T)

∣∣∣ XT
Di = xTDi

)
. (4.21)

defined only when P(XT
Di = xTDi) > 0.

Lemma 4.1. Under the assumptions (A1) through (A4) we may compute JTA for
any T ∈ N.

Proof. We proceed by induction on J tA, ct` and ctr, as illustrated by figure 18. We are
given J0

A by the initial conditions. By Lemmas 3.2 and 3.3 we show that

1. given J tA we may compute {cti}i=1,..,k (Lemma 4.2) and

2. given J tA, {cti}i=1,..,k we may compute J t+1
A (Lemma 4.3).

c0

J0

Given by Initial Conditions

J1

c1 ct

Jt Jt+1

ct+1

Figure 18: Induction on J t and ct.

Lemma 4.2. Under the assumptions (A1) through (A4) we may compute {cti}i=1,..,k

given J tA.

Proof. Consider any i ∈ {1, ..., k}. By assumptions (A1) and (A4) we have that

X t
Bi∪Di

d
= X t

Ri∪Ci (4.22)

40

for Ri, Ci ⊆ A. We also assume that we are given J tA, the joint distribution of X t
A.

And so for xtBi , x
t
Di with P

(
X t
Di = xtDi

)
> 0 we observe that

cti
(
xBi(t), x

t
Di

)
(4.23)

= P
(
XBi(t) = xBi(t)

∣∣∣ X t
Di = xtDi

)
(4.24)

= P
(
XRi(t) = xBi(t)

∣∣∣ X t
Ci = xtDi

)
by equation 4.22 (4.25)

=

∑
ytA : yRi (t)=xBi (t), y

t
Ci

=xtDi
J tA (ytA)∑

ytA : ytCi
=xtDi

J tA (ytA)
(4.26)

and we may compute cti from J tA as needed.

From equation 4.26 it is immediate that if Ri = Rj and Ci = Cj then cti = ctj. In the
implementation of our local recursions we use this to avoid redundant computation.

Lemma 4.3. Under the assumptions (A1) through (A4) we may compute J t+1
A given

J tA and {cti}i=1,..,k.

Proof.

We observe that

J t+1
A
(
xt+1
A
)

= P
(
X t+1
A = xt+1

A
)

(4.27)

= P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA

)
P
(
X t
A = xtA

)
. (4.28)

As P (X t
A = xtA) is simply J tA (xtA) which we have by assumption, we are now left to

compute P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣X t
A = xtA

)
. We notice that

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣X t
A = xtA

)
(4.29)

=
∑
xB(t)

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA, XB(t) = xB(t)

)
∗ P

(
XB(t) = xB(t)

∣∣∣ X t
A = xtA

) (4.30)

and now examine the two terms in the summation above separately. We may simplify
the first term as

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ X t
A = xtA, XB(t) = xB(t)

)
=
∏
v∈A

g (xv(t+ 1), xv(t), x∂v(t))
(4.31)

Finally we use conditional independence given the double boundary (specifically
Lemma 2.5) to simplify the latter term.

P
(
XB(t) = xB(t)

∣∣∣ X t
A = xtA

)
(4.32)

41

=
k∏
i=1

P
(
XBi(t) = xBi(t)

∣∣∣ X t
A = xtA

)
by (A3) (4.33)

=
k∏
i=1

P
(
XBi(t) = xBi(t)

∣∣∣ X t
Di = xtDi

)
by (A4) (4.34)

=
k∏
i=1

cti
(
xBi(t), x

t
Di

)
(4.35)

In summary we have

J t+1
A
(
xt+1
A
)

= J tA
(
xtA
)∑
xB(t)

∏
v∈A

g (xv(t+ 1), xv(t), x∂v(t))
k∏
i=1

cti
(
xBi(t), x

t
Di

) (4.36)

and so we may compute J t+1
A from J tA, c

t
` and {cti}i=1,..,k.

To avoid redundant computation in our implementation we observe that equation
4.36 factors as

J t+1
A
(
xt+1
A
)

= J tA
(
xtA
) ∏
i∈{1,...,k}
Bi=∅

∏
v∈Ai

g (xv(t+ 1), xv(t), x∂v(t))

∗
∏

i∈{1,...,k}
Bi 6=∅

∑
xBi (t)

cti
(
xBi(t), x

t
Di

) ∏
v∈Ai

g (xv(t+ 1), xv(t), x∂v(t)) .

(4.37)

Our local recursions may then be expressed as a dynamic programming algorithm as
follows.

42

Algorithm 5 LocalRecursions(T, ν, g)

for each xA(0) do
J0
A (xA(0)) =

∏
v∈A ν(xv(0))

end for

for t = 0, 1, ..., T − 1 do

{compute each cti}
for i = 1, 2, ..., k do

if Ri = Rj and Ci = Cj for some j < i then
cti = ctj

else
for each xBi(t), and xtDi do

cti(xBi(t), x
t
Di) =

∑
yt
A

: yRi (t)=xBi (t), y
t
Ci

=xtDi
JtA(ytA)∑

yt
A

: ytCi
=xtDi

JtA(ytA)

end for
end if

end for

{compute J t+1
A }

for each xt+1
A do

J t+1
A
(
xt+1
A
)

= J tA (xtA)
∏

i∈{1,...,k}
Bi=∅

∏
v∈Ai g (xv(t+ 1), xv(t), x∂v(t))

∗
∏

i∈{1,...,k}
Bi 6=∅

∑
xBi (t)

cti
(
xBi(t), x

t
Di

)∏
v∈Ai g (xv(t+ 1), xv(t), x∂v(t))

end for
end for
return JTA

We now present a series of interaction networks on which our local recursions may be
applied. For each interaction network we provide regions Ai,Bi, Ci,Ri which satisfy
properties (A2), (A3) and (A4). We may ignore (A1) as it will always follow from
our assumption that each particle is identical.

4.2.1 Revisiting The Ring

We may now express our local recursions on a ring once more in terms of the more
general formulation.

We still consider A = {−1, 0, 1} with ∂A = B = {−2, 2}. However we now partition
A as A1 = {−1}, A2 = {−1}, A3 = {0} and B as B1 = {−2}, B2 = {2}, B3 = ∅.
Notice that (A2) is satisfied as ∂Ai ∩ Bj = ∅ for each i 6= j.

43

C R

-2

-1

0

1

2

A

B1 B2

Figure 19: Local Recursions for a Ring

We observe that D1 = ∂2B1 ∩ A = {−1, 0}, D2 = ∂2B2 ∩ A = {1, 0} and must find
Ci,Ri which satisfy

GBi ' GRi , GDi ' GCi and GBi∪Di ' GRi∪Ci for i ∈ {1, 2}. (4.38)

We now show that C1 = C2 = C = {−1, 0} and R1 = R2 = R = {1} satisfy equation
4.38. GRi ' GBi is trivially satisfied as Ri and Bi consist of only one particle.
Moreover GD1 , GD2 and GC are line graphs with two particles while GD1∪B1 , GD2∪B2
and GR∪C are line graphs with three particles. Any two line graphs with n particles
are isomorphic and therefore equation 4.38 is satisfied.

In using our more general formulation we have found a slight improvement in ef-
ficiency from the local recursions initially presented for the ring in Section 4.1.2.
We had previously needed conditional distributions ct` and ctr. In our more general
formulation, since Ci = C and Ri = R for i ∈ {1, 2}, we need only compute the
conditional distribution of XR(T) given XT

C since

cTi
(
xBi(T), xTDi

)
= P

(
XBi(T) = xBi(T)

∣∣∣ XT
Di = xTDi

)
= P

(
XR(T) = xBi(T)

∣∣∣ XT
C = xTDi

) (4.39)

for i ∈ {1, 2} and so cT1 = cT2 .

Finally note that (A3) is not satisfied exactly for finite N rings and there exists
paths from B1 to B2 which do not contain at least two particles in A. One may
travel clockwise from B2 to reach B1. However, as N grows large the dependence
between B1 and B2 becomes negligible. Additionally if the ring contains a break then
(A3) is exactly satisfied. A ring with a break may also be referred to as a line graph
or a regular tree with degree 2. In fact, we now show that our local recursions are
exact when the interaction network is a regular tree of any finite degree.

44

4.2.2 d-Regular Trees

A d-regular tree is an acyclic graph where each non-leaf particle has exactly d neigh-
bors. We now express our local recursions on a d-regular tree in terms of our more
general formulation and show that they are exact. Without loss of generality we
label the root as r with d children 1, 2, ..., d.

r

1 2 3

B111 12 B221 22 B331 32

A

B

d = 3

R

C

Figure 20: Local Recursions for a d-Regular Tree when d = 3

For our local recursions we consider regionA = {r, 1, 2, ..., d} with partitionA0 = {r}
and Ai = {i} for i ∈ {1, ..., d}. We then let Bi = ∂i\{r} for i ∈ {1, ..., d} and Br = ∅.
Note that Br,B1, ...,Bd forms a disjoint partition of ∂A = B and ∂Ai ∩ Bj = ∅ for
each i 6= j and so (A2) is satisfied. (A3) is also satisfied as each path from Bi to Bj
must travel through particles i, r, j ∈ A.

We now claim that Ci = C = {r, 1} and Ri = R = {2, ..., d} for i ∈ {1, ..., d} satisfy
(A4). Clearly GBi ' GR as GBi and GR consist of d−1 particles with no interactions.
GDi and GC are also isomorphic as they are simply line graphs with two particles.
Finally we note that both GBi∪Di and GR∪C are hub and spoke graphs with d + 1
particles. Therefore they are isomorphic as needed. In a hub and spoke graph the
only connections are between a central particle and all other particles, as illustrated
by figure 21.

45

Figure 21: Hub and Spoke Graph with 9 Particles

As a d-regular tree satisfies (A2), (A3) and (A4), our local recursions are exact.

4.2.3 Load Balancing on a Ring

Recall that in the model of load balancing on a ring we observe the interaction
network depicted in figure 22. For reference we introduce the model of load balancing
in Section 2.2.3.

Figure 22: Interaction Network for Load Balancing on a Ring

Some methods we discuss in Section 3 are not applicable for this interaction net-
work, as it contains many short cycles. However, we may still implement our local
recursions.

46

B2

C

B1
-5

-4

-3

-2
-1 1

2

3

4

5

A R

Figure 23: Local Recursions for the Load Balancing Interaction Network

We must now consider a larger local region A = {−3,−2,−1, 1, 2, 3} with partition
A1 = {−3,−2}, A2 = {2, 3}, and A3 = {−1, 1}. Both B1 and B2 are depicted by
figure 23 while B3 = ∅. Once again we find ourselves in the setting where Ci = C
and Ri = R for each i, and so the computation of only one conditional distribution
is required for each time.

4.3 The τ-Approximation

Our local recursions, as implemented by algorithm 5, have a computational complex-
ity which is exponential in time T . The exponential complexity arises from the fact
that we must consider particle trajectories of length T . For k particles which take
values in state space X there are |X |kT possible trajectories of length T .

Though this computation is possible for small T , it is infeasible when we wish to
understand the long term behavior of a system. As an alternative we now introduce
an approximation, which we denote the τ -approximation, that has linear computa-
tional complexity in T . As we observe in Section 5, the τ -approximation is highly
accurate.

In the τ -approximation we consider only the previous τ time steps of the system for
some fixed τ ∈ N. Where we had previously considered full trajectories

XT
A = (XA(0)x, ..., XA(T)) (4.40)

we now consider τ -trajectories defined as

Xτ,T
A = (XA(T − τ ∨ 0), ..., XA(T)) (4.41)

47

where t − τ ∨ 0 = max(t − τ, 0). Accordingly we aim to compute the distribution
Jτ,TA defined as

Jτ,TA (xτ,TA) = P
(
Xτ,T
A = xτ,TA

)
. (4.42)

The equations for the τ -Approximation are nearly identical to the full local recursions
when we replace full trajectories by τ -trajectories. In fact, the τ -Approximation
would be exact if the property of conditional independence given the double boundary
held for the τ -trajectories, as in equation 4.43.

Xτ,T
A ⊥⊥ Xτ,T

V\(A∪∂2A) | X
τ,T
∂2A. (4.43)

However, we have seen that in general equation 4.43 is only an approximation when
τ < T . Often the full trajectories are required for conditional independence.

In the τ -approximations we replace equations 4.26 and 4.37 of the full local recursions
by

cτ,ti (xBi(t), x
τ,t
Di) =

∑
yτ,tA : yRi (t)=xBi (t), y

τ,t
Ci

=xτ,tDi
Jτ,tA

(
yτ,tA
)

∑
yτ,tA : yτ,tCi

=xτ,tDi
Jτ,tA

(
yτ,tA
) (4.44)

and

Jτ,t+1
A

(
xτ,t+1
A

)
=

∑
xA(t−τ)

Jτ,tA
(
xτ,tA
) ∏
i∈{1,...,k}
Bi=∅

∏
v∈Ai

g (xv(t+ 1), xv(t), x∂v(t))

∗
∏

i∈{1,...,k}
Bi 6=∅

∑
xBi (t)

cτ,ti
(
xBi(t), x

τ,t
Di

) ∏
v∈Ai

g (xv(t+ 1), xv(t), x∂v(t)) .
(4.45)

In equation 4.45 we introduce the sum
∑

xA(t−τ) when τ ≤ t as we must consider all
possible states of particles in A at time t− τ . When τ > t we may ignore the sum.
We present an implementation of the τ -approximation below, and Section A.6 of the
appendix contains a full derivation.

48

Algorithm 6 τ -Approximation(T, τ, ν, g)

for each xA(0) do
Jτ,0A (xA(0)) =

∏
v∈A ν(xv(0))

end for

for t = 0, 1, ..., T − 1 do

{compute each cτ,ti }
for i = 1, 2, ..., k do

if Ri = Rj and Ci = Cj for some j < i then
cτ,ti = cτ,tj

else
for each xBi(t), and xtDi do

cτ,ti (xBi(t), x
τ,t
Di) =

∑
y
τ,t
A

: yRi (t)=xBi (t), y
τ,t
Ci

=x
τ,t
Di

Jτ,tA (yτ,tA)∑
y
τ,t
A

: y
τ,t
Ci

=x
τ,t
Di

Jτ,tA (yτ,tA)

end for
end if

end for

{compute Jτ,t+1
A }

for each xτ,t+1
A do

if τ ≤ t then
Jτ,t+1
A

(
xτ,t+1
A

)
=
∑

xA(t−τ) J
τ,t
A
(
xτ,tA
)∏

i∈{1,...,k}
Bi=∅

∏
v∈Ai g (xv(t+ 1), xv(t), x∂v(t))

∗
∏

i∈{1,...,k}
Bi 6=∅

∑
xBi (t)

cτ,ti
(
xBi(t), x

τ,t
Di

)∏
v∈Ai g (xv(t+ 1), xv(t), x∂v(t))

else
Jτ,t+1
A

(
xτ,t+1
A

)
= Jτ,tA

(
xτ,tA
)∏

i∈{1,...,k}
Bi=∅

∏
v∈Ai g (xv(t+ 1), xv(t), x∂v(t))

∗
∏

i∈{1,...,k}
Bi 6=∅

∑
xBi (t)

cτ,ti
(
xBi(t), x

τ,t
Di

)∏
v∈Ai g (xv(t+ 1), xv(t), x∂v(t))

end if
end for

end for
return Jτ,TA

4.4 Pair and Triplet-approximations for the Ring

We return to the pair-approximation discussed in Section 3.3.3 with a more ana-
lytic perspective. We present some assumptions under which a pair and triplet-

49

approximation are exact for the ring. We also show that algorithm 6 may be used
for an implementation of each approximation.

Consider the ring and let C
(k)
i1,...,ik

(t) be the proportion of consecutive particles which
have states (i1, ..., ik). Recall that the Pair-approximation applied by Gast in [6] is

C
(3)
i1,i2,i3

(t) =
C

(2)
i1,i2

(t) ∗ C(2)
i2,i3

(t)

C
(1)
i2

(t)
(4.46)

We now consider the hypothetical setting in which the following two conditions hold.

• As the number of particles goes to infinity, C
(k)
i1,...,ik

(t) converges to the proba-
bility that k consecutive particles will be in states (i1, ..., ik) for k ∈ {1, ..., 4}.

• Xu(t) is conditionally independent of Xv(t) given X∂u(t) for v 6∈ ∂u. In other
words, the time marginals obey the spatial Markov property.

Under these assumptions the pair-approximation is exact for the ring as

C
(3)
i1,i2,i3

(t) (4.47)

= P(Xu1(t) = i1, Xu2(t) = i2, Xu3(t) = i3) (4.48)

= P(Xu1(t) = i1 | Xu2(t) = i2, Xu3(t) = i3)

∗ P(Xu2(t) = i2, Xu3(t) = i3)
(4.49)

= P(Xu1(t) = i1 | Xu2(t) = i2)

∗ P(Xu2(t) = i2, Xu3(t) = i3)
(4.50)

=
C

(2)
i1,i2

(t) ∗ C(2)
i2,i3

(t)

C
(1)
i2

(t)
. (4.51)

If instead we consider the case where time marginals satisfy the property of condi-
tional independence given the double boundary then a so-called triplet-approximation
is exact. We observe that

C
(4)
i1,i2,i3,i4

(t) (4.52)

= P(Xu1(t) = i1, ..., Xu4(t) = i4) (4.53)

= P(Xu1(t) = i1 | Xu2(t) = i2, Xu3(t) = i3, Xu4(t) = i4)

∗ P(Xu2(t) = i2, Xu3(t) = i3, Xu4(t) = i4)
(4.54)

= P(Xu1(t) = i1 | Xu2(t) = i2, Xu3(t) = i3)

∗ P(Xu2(t) = i2, Xu3(t) = i3, Xu4(t) = i4)
(4.55)

=
C

(3)
i1,i2,i3

(t) ∗ C(3)
i2,i3,i4

(t)

C
(2)
i2,i3

(t)
. (4.56)

50

The assumption that time marginals satisfy the property of conditional independence
given the double boundary corresponds exactly to the τ -approximations we give in
Section 4.3 when τ = 0. And so algorithm 6 is an exact implementation of this
triplet-approximation with the regions outlined in Section 4.2.1.

We may modify algorithm 6 slightly for an implementation of the pair-approximation
on a ring. Consider four consecutive particles {−2,−1, 1, 2}. We let A be {−1, 1}
with A1 = {−1}, A2 = {1}, B1 = {−2}, B2 = {2}, D1 = {−1} and D2 = {1}. We
also let Ri = {−1} and Ci = {1} for i = 1, 2.

Finally, we may be able to consider full particle trajectories up to time t and make
a more complicated “triplet-approximation”. This is a very rough idea which we
discuss further in Section A.5 of the appendix.

5 Results

In this section we discuss implementation details and present our results.

5.1 Implementation Details

An efficient implementation of each algorithm discussed in this report may be found
in the repository https://github.com/mwortsma/particle_systems2. The com-
mand line interface and plotting tools are written in Python 2.7 while most of the
computation is done by Go (https://golang.org/). We chose Go as it is fast and
easy to parallelize. Moreover it is easy to compile Go binaries for different systems,
enabling us to build locally then run on a computing cluster. For system organization
refer to Section A.7 of the appendix.

5.2 Small T Exact Trajectory

We begin by considering the trajectory XT
i = (Xi(0), ..., Xi(T)) of a typical particle.

When T is small we may use our local recursions to obtain the the probability of
each possible particle trajectory.

51

https://github.com/mwortsma/particle_systems2
https://golang.org/

Figure 24: Contact Process on a Ring (T = 4, p = 0.6, q = 0.3)

In figure 25 we examine the contact process on a ring. To estimate the probability of
a given trajectory we use 3∗106 simulations of the full system with N = 50 particles.
We then predict the probability with the local recursions (algorithm 5) and the mean
field approximation (algorithm 3). The local recursions match the full simulation so
well that we do not observe any difference from the figures alone. Accordingly we
give the relative errors in table 2. We do not expect that they are exactly equivalent
as the full simulation is not deterministic. Note that we use the initial conditions
P(Xi(0) = 0) = 0.6.

On the y-axis of figure 25 we plot the probability and on the x-axis we have all
possible trajectories. Coordinate k on the x-axis corresponds to the trajectory of k
converted to binary. For example, coordinate 6 corresponds to trajectory 0110.

52

Table 1: Relative Error for the Contact Process on a Ring (T = 4, p = 0.6, q = 0.3)

Trajectory Simulation Rel. Error (%) Rel. Error (%)
(Estimated Probability) (Local Recursions) (Mean Field)

0 0 0 0 0.322 0.0004 0.2259
0 0 0 1 0.053 0.0031 0.7180
0 0 1 0 0.024 0.0033 0.4226
0 0 1 1 0.057 0.0008 0.4263
0 1 0 0 0.028 0.0036 0.1175
0 1 0 1 0.015 0.0035 0.2168
0 1 1 0 0.030 0.0002 0.0002
0 1 1 1 0.071 0.0007 0.0007
1 0 0 0 0.064 0.0009 0.0226
1 0 0 1 0.017 0.0071 0.3761
1 0 1 0 0.011 0.0057 0.1984
1 0 1 1 0.027 0.0011 0.2039
1 1 0 0 0.056 0.0015 0.1083
1 1 0 1 0.028 0.0044 0.2065
1 1 1 0 0.059 0.0010 0.0010
1 1 1 1 0.137 0.0005 0.0005

We observe in the table above that for certain trajectories the mean field approxima-
tion matches our local recursion, even though we are considering the ring. However,
we notice that the trajectories which match depend only on the initial conditions.
The mean field and local recursions will predict the same initial conditions, as we
are using independent initial conditions. For example, consider the trajectory 0110.
The first transition 0 → 1 depends only on the initial conditions. The next two
transitions 1 → 1 and 1 → 0 occur with probability 1 − q and q respectively. For
any trajectory which depends on the state of the system at any non-zero time, the
mean field approximation will differ from the local recursions.

We now consider the contact process with T = 5 on a d-regular tree with d = 3. We
repeat the experiment with the same system parameters but use initial conditions
P(Xi(0) = 0) = 0.5.

53

Figure 25: Contact Process on a Tree (T = 5, p = 0.6, q = 0.3)

Notice that the trajectories which depend most on the state of other particles in the
system (i.e. 00000, 00001) are the trajectories where the mean field approximation
gives the worst prediction.

54

Table 2: Relative Error for the Contact Process on a Tree (T = 5, p = 0.6, q = 0.3)

Trajectory Simulation Rel. Error (%) Rel. Error (%)
(Estimated Probability) (Local Recursions) (Mean Field)

0 0 0 0 0 0.166 0.0002 0.2747
0 0 0 0 1 0.040 0.0030 0.2778
0 0 0 1 0 0.017 0.0012 0.2866
0 0 0 1 1 0.040 0.0010 0.2894
0 0 1 0 0 0.018 0.0011 0.2458
0 0 1 0 1 0.008 0.0093 0.1328
0 0 1 1 0 0.018 0.0013 0.2053
0 0 1 1 1 0.043 0.0021 0.2094
0 1 0 0 0 0.022 0.0015 0.0082
0 1 0 0 1 0.008 0.0040 0.2159
0 1 0 1 0 0.005 0.0037 0.1030
0 1 0 1 1 0.010 0.0022 0.0976
0 1 1 0 0 0.021 0.0030 0.0547
0 1 1 0 1 0.011 0.0048 0.1069
0 1 1 1 0 0.022 0.0057 0.0057
0 1 1 1 1 0.051 0.0006 0.0006
1 0 0 0 0 0.058 0.0011 0.1177
1 0 0 0 1 0.016 0.0031 0.3512
1 0 0 1 0 0.008 0.0041 0.2234
1 0 0 1 1 0.018 0.0001 0.2183
1 0 1 0 0 0.010 0.0029 0.0418
1 0 1 0 1 0.005 0.0127 0.1730
1 0 1 1 0 0.010 0.0023 0.0930
1 0 1 1 1 0.024 0.0042 0.0948
1 1 0 0 0 0.052 0.0004 0.0091
1 1 0 0 1 0.018 0.0050 0.2185
1 1 0 1 0 0.011 0.0012 0.1034
1 1 0 1 1 0.025 0.0011 0.1014
1 1 1 0 0 0.049 0.0005 0.0505
1 1 1 0 1 0.025 0.0014 0.1005
1 1 1 1 0 0.051 0.0001 0.0001
1 1 1 1 1 0.120 0.0008 0.0008

5.3 Approximate Time Marginals

We may use the τ -approximation (algorithm 6) to examine the long term behavior of
the system. We focus now on the SIR process and first plot P(Xi(t) = Susceptible)
for t ∈ {0, 1, ..., T}.

In the following example, the mean field approximation matches the predicted prob-
ability closely for small t. However, as t grows large the mean field approximation
predicts that no particle will be left in the susceptible state. In this example we
obtain accurate results even when τ = 0. In fact, in example illustrated below, the
predicted probability when τ = 0 is indistinguishable from the predicted probability
when τ = 1. Though this is not always the case, this result is promising as the τ = 0
approximation is extremely fast.

55

Figure 26: Susceptible Probability for the SIR Process on a Ring (T = 30, p = 0.5,
q = 0.1, Initial probability of being susceptible is 0.8)

Table 3: Relative Error for the SIR Process on a Ring (T = 30, p = 0.5, q = 0.1)

Time Simulation Rel. Error (%) Rel. Error (%) Rel. Error (%)
(Estimated Probability (τ -Approx, (τ -Approx, (Mean Field)
of being Susceptible) τ = 0) τ = 1)

0 0.80 0.0005 0.0005 0.0005
1 0.72 0.0005 0.0005 0.0005
2 0.65 0.0001 0.0001 0.0429
3 0.60 0.0000 0.0000 0.1271
4 0.55 0.0003 0.0003 0.2434
5 0.52 0.0004 0.0004 0.3751
6 0.48 0.0001 0.0001 0.5040
7 0.46 0.0007 0.0007 0.6171
8 0.43 0.0006 0.0006 0.7085
9 0.41 0.0001 0.0001 0.7783
10 0.40 0.0003 0.0003 0.8297
11 0.38 0.0004 0.0004 0.8674
12 0.37 0.0006 0.0006 0.8948
13 0.36 0.0008 0.0008 0.9150
14 0.35 0.0005 0.0005 0.9300
15 0.34 0.0003 0.0003 0.9414
16 0.33 0.0004 0.0004 0.9501
17 0.33 0.0000 0.0000 0.9568
18 0.32 0.0001 0.0001 0.9621
19 0.32 0.0000 0.0000 0.9663
20 0.31 0.0002 0.0002 0.9698
21 0.31 0.0001 0.0001 0.9725
22 0.31 0.0000 0.0000 0.9748
23 0.31 0.0003 0.0003 0.9767
24 0.30 0.0003 0.0003 0.9783
25 0.30 0.0002 0.0002 0.9796
26 0.30 0.0001 0.0001 0.9808
27 0.30 0.0001 0.0001 0.9818
28 0.30 0.0000 0.0000 0.9826
29 0.30 0.0002 0.0002 0.9833

56

We believe that the τ -approximations are better when the process converges quickly
to an equilibrium. The worst performance we have observed for the τ -approximations
is when the process slowly asymptotes. One such example of poor performance from
the τ -approximations is illustrated below for the contact process on a ring.

Figure 27: Contact Process on a Ring (T = 200, p = 2
3
, q = 1

3
, P(Xi(0) = 0) = 0.5)

From various simulations we make the following conjectures on the behavior of the
τ -approximations.

1. limτ→∞ J
τ,T
A = JTA.

Moreover if we define d0 = J0,T
A and di = J i,TA − J i−1,T

A for i > 0. Then∑∞
i=0 di = JTA.

2. The sequence {Jτ,TA }τ∈N is monotone.

3. {di}i∈N is a monotone decreasing sequence.

In fact, it would appear that {di}i∈N are decreasing at a rate that is roughly
exponential.

5.4 Approximate Equilibrium

We now examine models from statistical physics. We aim to predict the behavior
of the system when it has approximately reached equilibrium. For the parallel Potts

57

particle system discussed in Section 2.2.5 we expect that the process converges to the
Gibbs measure π. When the number of particles is small we may explicitly compute
the Gibbs measure, and we may always use MCMC (algorithm 2) to estimate π.

In the following example we consider only 5 particles so that we may explicitly com-
pute π. We let β = 0.5, h = J = 1, and observe that even the τ = 0 approximation
of parallel Potts converges fairly well to the Gibbs measure. We consider the Potts
process where a particle may have state 0,1 or 2. A particle is initialized to state
0,1, or 2 with probability 0.3, 0.3, and 0.4 respectively. From observation we assume
that approximated equilibrium is reached at T = 50.

We consider the ring and plot the probability of each possible configuration of the
local region A which consists of three consecutive particles at T = 50. The MCMC
algorithm is slightly more accurate as the τ -approximation implicitly assumes that
the ring is infinite or at least large.

Figure 28: Predicted Approximate Equilibrium for the Potts Process

58

Table 4: Relative Error for the Potts Process on a Ring

Configuration of Probability from Rel. Error (%) Rel. Error (%) Rel. Error (%)
Three Consecutive Marginalized MCMC (τ -Approx, (Mean Field)

Particles Gibbs Measure (106 samples) τ = 0)
0 0 0 0.259 0.0059 0.0374 0.1639
0 0 1 0.082 0.0019 0.0112 0.1366
0 0 2 0.047 0.0005 0.0072 0.0776
0 1 0 0.082 0.0022 0.0112 0.1366
0 1 1 0.027 0.0012 0.0508 0.4841
0 1 2 0.015 0.0023 0.0538 0.4313
0 2 0 0.047 0.0014 0.0072 0.0776
0 2 1 0.015 0.0025 0.0538 0.4313
0 2 2 0.009 0.0149 0.0518 0.3540
1 0 0 0.058 0.0009 0.0367 0.6214
1 0 1 0.050 0.0006 0.0023 0.1892
1 0 2 0.017 0.0006 0.0651 0.2675
1 1 0 0.050 0.0113 0.0023 0.1892
1 1 1 0.045 0.0075 0.0676 0.6105
1 1 2 0.015 0.0010 0.0040 0.3807
1 2 0 0.017 0.0060 0.0651 0.2675
1 2 1 0.015 0.0151 0.0040 0.3807
1 2 2 0.005 0.0113 0.0883 0.0341
2 0 0 0.035 0.0049 0.0229 0.4375
2 0 1 0.018 0.0022 0.0557 0.1852
2 0 2 0.017 0.0094 0.0129 0.3185
2 1 0 0.018 0.0040 0.0557 0.1852
2 1 1 0.010 0.0220 0.0527 0.0614
2 1 2 0.009 0.0217 0.0032 0.4509
2 2 0 0.017 0.0121 0.0129 0.3185
2 2 1 0.009 0.0047 0.0032 0.4509
2 2 2 0.009 0.0000 0.0704 0.6850

When n is larger the τ = 0 approximation is even more accurate, as illustrated by
the figure below.

Figure 29: Predicted Approximate Equilibrium for the Potts Process with n = 20

59

5.5 Comparison with the Pair-Approximation

Finally we compare our τ -approximation with the pair-approximation. We first
consider the SIR process on a ring with 50 particles. We let p = 0.9, q = 0.1,
and use 105 samples of the full simulation to estimate the probability. A particle
is initially susceptible with probability 0.8 and infected with probability 0.2. The
curves on figure 30 show the predicted probability that a particle is susceptible.

Figure 30: SIR Process Comparison with the Pair-Approximation

We may also simulate the contact process and compare our τ -approximations with
the pair-approximation. In figure 31 we use parameters p = 0.6, q = 0.1 and let
a particle be susceptible at time 0 with probability 0.6. 5 ∗ 105 samples of the
full simulation are used for an estimate of the probability, and again we show the
probability that a particle is susceptible.

Figure 31: Contact Process Comparison with the Pair-Approximation

60

As expected our τ -approximation outperforms the pair-approximation. We show the
relative errors from figure 29 below.

Table 5: Relative Error for the SIR Process on a Ring (T = 30, p = 0.9, q = 0.1)

Time Simulation Rel. Error (%) Rel. Error (%) Rel. Error (%) Rel. Error (%)
(Estimated Probability (τ -Approx, (τ -Approx, (Pair-Approximation) (Mean Field)
of being Susceptible) τ = 0) τ = 1)

0 0.80 0.0003 0.0003 0.0003 0.0003
1 0.66 0.0021 0.0021 0.0021 0.0021
2 0.55 0.0006 0.0006 0.0006 0.1543
3 0.46 0.0030 0.0030 0.0060 0.4345
4 0.40 0.0055 0.0055 0.0140 0.7183
5 0.35 0.0017 0.0017 0.0177 0.8874
6 0.30 0.0066 0.0066 0.0316 0.9553
7 0.27 0.0062 0.0062 0.0408 0.9804
8 0.24 0.0049 0.0049 0.0495 0.9903
9 0.22 0.0057 0.0057 0.0603 0.9947
10 0.21 0.0037 0.0037 0.0678 0.9969
11 0.19 0.0031 0.0031 0.0762 0.9980
12 0.18 0.0058 0.0058 0.0874 0.9987
13 0.17 0.0089 0.0089 0.0983 0.9990
14 0.16 0.0080 0.0080 0.1040 0.9993
15 0.15 0.0082 0.0082 0.1101 0.9995
16 0.15 0.0087 0.0087 0.1157 0.9996
17 0.14 0.0110 0.0110 0.1226 0.9997
18 0.14 0.0091 0.0091 0.1240 0.9997
19 0.13 0.0121 0.0121 0.1303 0.9998
20 0.13 0.0131 0.0131 0.1339 0.9998
21 0.13 0.0137 0.0137 0.1366 0.9998
22 0.12 0.0160 0.0160 0.1407 0.9998
23 0.12 0.0168 0.0168 0.1427 0.9999
24 0.12 0.0170 0.0170 0.1439 0.9999
25 0.12 0.0173 0.0173 0.1449 0.9999
26 0.12 0.0182 0.0182 0.1465 0.9999
27 0.12 0.0181 0.0181 0.1467 0.9999
28 0.12 0.0182 0.0182 0.1470 0.9999
29 0.12 0.0170 0.0170 0.1457 0.9999

6 Conclusion and Future Work

In this report we have presented local recursions which allow for the exact computa-
tion of marginal distributions for interacting particle systems on sparse graphs. We
have demonstrated the effectiveness of our recursions when T is small. Moreover,
we have motivated a fast approximation which may be used to understand the long
term behavior and approximate equilibrium.

Additionally, we have discussed a series of important examples of interacting particle
systems and surveyed previous work which aims to understand the dynamics of a
typical particle. With novel theory introduced by [11] we have been able to examine
existing theory with a new perspective.

This work is only the beginning. There is vast opportunity for the application of
[11] to understand systems where analytic solutions were previously thought to be
out of reach. We have not ventured far beyond discrete time in this report, and

61

we ask if there is an equivalent formulation of our local recursions for continuous
time. Moreover, we wonder if the local recursions may be made to be more efficient.
Perhaps in certain cases there is some τ where the τ -approximation is exact. We
already observe that in certain settings we achieve accurate results even for τ = 0.
As discussed in Section 4.4, if the approximation when τ = 0 is exact then we may
use a triplet-approximation to write down a series of exact differential equations for
the ring.

Finally, we believe that there is a myriad of applications for our local recursions and
conditional independence given the double boundary that we would like to explore.
For instance, we are interested in what results we could achieve if we were to model
a pixel in a video as a particle trajectory. Geman and Geman invent Gibbs sampling
for the bayesian restoration of images in [7]. We wonder if we could condition on
the double boundary instead and consider the bayesian restoration of videos. In
computer vision there has also been frequent use of belief propagation algorithms
for static images [5]. Perhaps we may use our discussions in Section 3.2 to employ
similar techniques for videos.

Interacting particle systems will continue to be an interesting area of study for many
years to come and we look forward to future work.

62

A Appendix

A.1 Proof of Lemma 2.1.

Since A,B and S are disjoint sets and every path from A to B contains at least one
node in S it follows that ∂A ∩B = ∅. We then have

P(XA = xA|XS = xS) (A.1)

=
∑
xB

P(XA = xA|XS = xS, XB = xB)P(XB = xB|XS = xS) (A.2)

=
∑
xB

P(XA = xA|XV\A = xV\A)P(XB = xB|XS = xS) as B ∪ S = V \ A

(A.3)

=
∑
xB

P(XA = xA|X∂A = x∂A)P(XB = xB|XS = xS) (A.4)

= P(XA = xA|X∂A = x∂A)
∑
xB

P(XB = xB|XS = xS) as ∂A ∩B = ∅

(A.5)

= P(XA = xA|X∂A = x∂A) (A.6)

= P(XA = xA|XV\A = xV\A) (A.7)

= P(XA = xA|XS = xS, XB = xB) as B ∪ S = V \ A
(A.8)

A.2 Proof of Remark 2.1

We claim that
Xi(t) = f(Xi(t− 1), X∂i(t− 1), ξi(t)) (A.9)

and

P(Xi(t) = v | Xi(t− 1) = u) = g(v, u,X∂i(t− 1)) (A.10)

are equivalent formulations. We will first show that A.9 implies A.10 and then that
A.10 implies A.9.

First consider the case where we have some function f which satisfies equation A.9.
Notice that for a given u, v

P(Xi(t) = v | Xi(t− 1) = u) (A.11)

63

= P(f(u,X∂i(t− 1), ξi(t)) = v) (A.12)

= P(f(u, x∂i, ξi(t)) = v|X∂i(t− 1) = x∂i)P(X∂i(t− 1) = x∂i) (A.13)

and there exists some A ∈ R such that A.13 becomes

P(ξi(t) ∈ A|X∂i(t− 1) = x∂i)P(X∂i(t− 1) = x∂i) (A.14)

= P(ξi(t) ∈ A)P(X∂i(t− 1) = x∂i) by independence. (A.15)

So we may define g(v, u, x∂i) = P(ξi(t) ∈ A)P(X∂i(t − 1) = x∂i) and g will satisfy
A.10.

Now we consider some g which satisfies A.10 and show that we may construct a
function f which satisfies A.9.

Let ξi(t) be uniform on the interval [0,1]. Now fix u, x∂i and consider the k possi-
ble values for Xi(t) denoted as {v1, ..., vk}. Divide the interval [0,1] into k disjoint
intervals A1, ..., Ak where Ai has length g(vi, u, x∂i). Then define

f(u, x∂i, ξi(t)) =
k∑
i=1

δAi(ξi(t))vi (A.16)

where δAi(ξi(t)) is 1 if ξi(t) ∈ Ai and 0 otherwise.

A.3 Proof of Lemma 2.2

Consider four adjacent particles i, j, k, l on a line graph with as depicted by figure
32.

i j k

i1
j1 k1

i0 j0 k0 t = 0

t = 1

l

l1

l1

Figure 32: Four Particles on a Line Graph

We consider the following process which we call the modified exclusion process, de-
fined by equations A.17, A.18 and A.19.

{Xv(0)}v∈V ∼ i.i.d. Bernoulli(δ) (A.17)

{ξv(t)}v∈V,t∈T ∼ i.i.d. Bernoulli(ε) (A.18)

For any consecutive particles a, b and c,

Xb(t) = max

Xb(t− 1)

Xa(t− 1)⊕Xc(t− 1)

ξb(t)

(A.19)

64

for t > 0 where ⊕ is the XOR operator.

Note that if Xv(t) = 1 then Xb(s) = 1 for any s > t. We are introducing noise into
the system so that we are are not considering configurations with 0 probability.

It is possible to see that the trajectories do not obey the spatial Markov property
by examining the times T = {0, 1}. If the trajectories did obey the spatial Markov
property then we would have

P(X1
j = x1

j |X1
i = x1

i , X
1
k = x1

k, X
1
l = x1

l)

= P(X1
j = x1

j |X1
i = x1

i , X
1
k = x1

k)
(A.20)

as l ∩ ∂j = ∅.

If X1
k = (0, 1) and both Xj(0) and Xl(0) are 0 it follows immediately that ξk(1) = 1.

Consequently we have

P(X1
j = (0, 0)|X1

i = (0, 0), X1
k = (0, 1), X1

l = (0, 0)) (A.21)

= P(Xj(0) = 0 ∩ ξj(1) = 0 ∩ ξk(1) = 1) (A.22)

= P(Xj(0) = 0)P(ξj(1) = 0)P(ξk(1) = 1) (A.23)

= (1− δ)(1− ε)ε (A.24)

However,

P(X1
j = (0, 0)|X1

i = (0, 0), X1
k = (0, 1)) (A.25)

= P (Xj(0) = 0 ∩ ξj(1) = 0 ∩ ({ξk(1) = 1} ∪ {Xl(0) = 1})) (A.26)

= P(Xj(0) = 0)P(ξj(1) = 0)P ({ξk(1) = 1} ∪ {Xl(0) = 1}) (A.27)

= (1− δ)(1− ε)(ε+ δ − εδ) (A.28)

and so the trajectories do not obey the spatial Markov property.

We now give a similar counterexample for the time marginals Xu(t).

If the time marginals Xu(t) did obey the spatial Markov property then we would
have that

P(Xj(1) = xj|Xi(1) = xi, Xk(1) = xk, Xl(1) = xl)

= P(Xj(1) = xj|Xi(1) = xi, Xk(1) = xk).
(A.29)

However we notice

P(Xj(1) = 0|Xi(1) = 0, Xk(1) = 1, Xl(1) = 0) (A.30)

= P (Xj(0) = 0 ∩ ξj(1) = 0 ∩ ({ξk(1) = 1} ∪ {Xk(0) = 1})) (A.31)

= P(Xj(0) = 0)P(ξj(1) = 0)P ({ξk(1) = 1} ∪ {Xk(0) = 1}) (A.32)

= (1− δ)(1− ε)(ε+ δ − εδ) (A.33)

65

and

P(Xj(1) = 0|Xi(1) = 0, Xk(1) = 1) (A.34)

= P (Xj(0) = 0 ∩ ξj(1) = 0 ∩ ({ξk(1) = 1} ∪ {Xk(0) = 1} ∪ {Xl(0) = 1})) (A.35)

= P(Xj(0) = 0)P(ξj(1) = 0)P ({ξk(1) = 1} ∪ {Xk(0) = 1} ∪ {Xl(0) = 1}) (A.36)

= (1− δ)(1− ε)(ε+ 2δ − εδ − δ2 + εδ2) (A.37)

and so both the time marginals Xi(t) and the complete trajectories XT
i need not

obey the spatial Markov property.

A.4 Proof of Lemma 2.5.

Since A,B and S are disjoint sets and every path from A to B contains at least two
particles in S it follows that ∂2A ∩ B = ∅. We simplify the notation so that XH is
taken to mean XT

H for any H. We then have

P(XA = xA|XS = xS) (A.38)

=
∑
xB

P(XA = xA|XS = xS, XB = xB)P(XB = xB|XS = xS) (A.39)

=
∑
xB

P(XA = xA|XV\A = xV\A)P(XB = xB|XS = xS) as B ∪ S = V \ A

(A.40)

=
∑
xB

P(XA = xA|X∂2A = x∂2A)P(XB = xB|XS = xS) (A.41)

= P(XA = xA|X∂2A = x∂2A)
∑
xB

P(XB = xB|XS = xS) as ∂2A ∩B = ∅

(A.42)

= P(XA = xA|X∂2A = x∂A) (A.43)

= P(XA = xA|XV\A = xV\A) (A.44)

= P(XA = xA|XS = xS, XB = xB) as B ∪ S = V \ A
(A.45)

A.5 The “Triplet” Approximation for the SIR Process on a
Ring (Full Particle Trajectories)

Consider the SIR process on a ring. We say that particle j has trajectory ui,r if
particle j is susceptible for t ∈ [0, i), infected for t ∈ [i, r), and recovered for t ∈

66

[r,∞). Let C
(k)
(i1,r1),...,(ik,rk) be the proportion of consecutive particles a1, ..., ak such

that particle aj has trajectory uij ,rj .

We use conditional independence given the double boundary to show that a variation
of the triplet-approximation is exact as the number of particles tends to infinity
and the following assumption holds: For k ∈ {1, ..., 4} C(k)

(i1,r1),...,(ik,rk) converges to

P
(
XT
a1

= ui1,j1 , ..., X
T
ak

= uik,jk
)

for consecutive particles a1, ..., ak. Now observe that

C
(4)
(i1,r1),...,(i4,r4) =

C
(3)
(i1,r1),...,(i3,r3) ∗ C

(3)
(i2,r2),...,(i4,r4)

C
(2)
(i2,r2),(i3,r3)

(A.46)

exactly as

C
(4)
(i1,r1),...,(i4,r4) (A.47)

= P
(
XT
a1

= ui1,j1 , ..., X
T
a4

= ui4,j4
)

(A.48)

= P
(
XT
a1

= ui1,j1 | XT
a2

= ui2,j2 , X
T
a3

= ui3,j3 , X
T
a4

= ui4,j4
)

∗ P
(
XT
a2

= ui2,j2 , X
T
a3

= ui3,j3 , X
T
a4

= ui4,j4
) (A.49)

= P
(
XT
a1

= ui1,j1 | XT
a2

= ui2,j2 , X
T
a3

= ui3,j3
)

∗ P
(
XT
a2

= ui2,j2 , X
T
a3

= ui3,j3 , X
T
a4

= ui4,j4
) (A.50)

=
C

(3)
(i1,r1),...,(i3,r3) ∗ C

(3)
(i2,r2),...,(i4,r4)

C
(2)
(i2,r2),(i3,r3)

(A.51)

where A.50 follows from the property of conditional dependence given the double
boundary. And so, theoretically, we may write down a series of exact differential
equations for the SIR Process on a ring. This is only a very rough idea which we
believe may warrant future work.

A.6 Full Derivation of the τ-Approximation

In deriving the τ -approximation we assume the property of conditional independence
given the double boundary of the τ -trajectories alone.

Xτ,T
A ⊥⊥ Xτ,T

V\(A∪∂2A) | X
τ,T
∂2A. (A.52)

We now show that under the assumptions (A1) through (A4) and equation A.52 we
may compute Jτ,t+1

A given Jτ,tA and {cτ,ti }i=1,..,k, where cτ,ti satisfies

cτ,ti
(
xBi(t), x

t
Di

)
(A.53)

= P
(
XBi(t) = xBi(t)

∣∣∣ Xτ,t
Di = xτ,tDi

)
(A.54)

67

= P
(
XRi(t) = xBi(t)

∣∣∣ Xτ,t
Ci = xτ,tDi

)
(A.55)

=

∑
yτ,tA : yRi (t)=xBi (t), y

τ,t
Ci

=xτ,tDi
Jτ,tA

(
yτ,tA
)

∑
yτ,tA : yτ,tCi

=xτ,tDi
Jτ,tA

(
yτ,tA
) (A.56)

for P(Xτ,t
Ci = xτ,tDi) > 0.

We assume now that τ ≤ t as the case where τ > t is handled Lemma 4.3. We
observe that for any xτ,t+1

A we have

Jτ,t+1
A

(
xτ,t+1
A

)
= P

(
Xτ,t+1
A = xτ,t+1

A
)

(A.57)

=
∑

xA(t−τ)

P
(
Xτ,t+1
A = xτ,t+1

A , xA(t− τ)
)

(A.58)

=
∑

xA(t−τ)

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ Xτ,t
A = xτ,tA

)
P
(
Xτ,t
A = xτ,tA

)
.

(A.59)

As P
(
Xτ,t
A = xτ,tA

)
is simply Jτ,tA

(
xτ,tA
)

which we have by assumption, we are now left

to compute P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣Xτ,t
A = xτ,tA

)
. We notice that

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣Xτ,t
A = xτ,tA

)
(A.60)

=
∑
xB(t)

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ Xτ,t
A = xτ,tA , XB(t) = xB(t)

)
∗ P

(
XB(t) = xB(t)

∣∣∣ Xτ,t
A = xτ,tA

) (A.61)

and now examine the two terms in the summation above separately. We may simplify
the first term as

P
(
XA(t+ 1) = xA(t+ 1)

∣∣∣ Xτ,t
A = xτ,tA , XB(t) = xB(t)

)
=
∏
v∈A

g (xv(t+ 1), xv(t), x∂v(t))
(A.62)

Finally we use conditional independence of the τ -trajectories given the double bound-
ary (equation A.52) to simply the latter term.

P
(
XB(t) = xB(t)

∣∣∣ Xτ,t
A = xτ,tA

)
(A.63)

=
k∏
i=1

P
(
XBi(t) = xBi(t)

∣∣∣ Xτ,t
A = xτ,tA

)
(A.64)

68

=
k∏
i=1

P
(
XBi(t) = xBi(t)

∣∣∣ Xτ,t
Di = xτ,tDi

)
(A.65)

=
k∏
i=1

cτ,ti
(
xBi(t), x

τ,t
Di

)
(A.66)

In summary we have

Jτ,t+1
A

(
xτ,t+1
A

)
=

∑
xA(t−τ)

J tA
(
xτ,tA
)∑
xB(t)

∏
v∈A

g (xv(t+ 1), xv(t), x∂v(t))
k∏
i=1

cti
(
xBi(t), x

τ,t
Di

) (A.67)

which we may factor to obtain

Jτ,t+1
A

(
xτ,t+1
A

)
=

∑
xA(t−τ)

Jτ,tA
(
xτ,tA
) ∏
i∈{1,...,k}
Bi=∅

∏
v∈Ai

g (xv(t+ 1), xv(t), x∂v(t))

∗
∏

i∈{1,...,k}
Bi 6=∅

∑
xBi (t)

cτ,ti
(
xBi(t), x

τ,t
Di

) ∏
v∈Ai

g (xv(t+ 1), xv(t), x∂v(t)) .

(A.68)

A.7 System Organization

Our system is organized as follows. The cmd2 Go binary may be run to obtain the
results of a single algorithm. For example, the command

cmd2 -contact_graph_time -graph=ring -T=30 -p=0.6 -q=0.1 \

-n=50 -steps=10000 -nu=[0.6,0.4]

will use 10000 samples of the full simulation of the contact process with 50 particles
to estimate P(Xi(t) = k) at each time t ∈ [0, 30] with the parameters p = 0.6,
q = 0.1, and the initial conditions P(Xi(0) = 0) = 0.6, P(Xi(0) = 1) = 0.4. We may
change the graph type to -graph=complete for the complete graph or -graph=er

for an Erdős-Rényi graph.

If we wish to compare different algorithms we use the python command line interface
given by main.py.

python main.py \

69

-commands="<command 1> | <command 2> | ... | <command n>" \

-shared="<arguments shared between each command> \

-show_plot -type=<plot type>

To compare the full simulation above to the τ -approximation (τ = 1) and the mean
field approximation we run

python main.py \

-commands="cmd2 -contact_graph_time -graph=ring -n=50 -steps=20000 |\

cmd2 -contact_local_time -tau=1 -d=2 |\

cmd2 -contact_meanfield_time"\

-shared="-T=30 -p=0.6 -q=0.1 -nu=[0.6,0.4]"\

-show_plot -type=time\

-labels="Full Simulation, Local Approx (Tau=1), Mean Field Approx"\

-title="Contact Process"

which generates the following figure.

Figure 33: Example Generated by the Above Command

If we are instead interested in the path of a typical particle, we may enumerate each
possible particle path on the x-axis. Note that we may only do this for small values
of T . For small values of T we may also omit the τ argument as τ will default to ∞
(and so we will recover the full local recursions).

70

python main.py \

-commands="cmd2 -contact_graph_path -graph=ring -n=50 -steps=20000 |\

cmd2 -contact_local_path -d=2 |\

cmd2 -contact_meanfield_path"\

-shared="-T=4 -p=0.6 -q=0.1 -nu=[0.6,0.4]"\

-show_plot -type=path\

-labels="Full Simulation, Local Recursions, Mean Field Approx"\

-title="Contact Process"

Figure 34: Example Generated by the Above Command

References

[1] Erik Aurell and Hamed Mahmoudi. A message-passing scheme for non-
equilibrium stationary states. Journal of Statistical Mechanics: Theory and
Experiment, 2011(04):P04014, 2011.

[2] Erik Aurell and Hamed Mahmoudi. Three lemmas on dynamic cavity method.
Communications in Theoretical Physics, 56(1):157, 2011.

[3] Hans Bethe and Henry Herbert Wills. Statistical theory of superlattices. Pro-
ceedings of the Royal Society of London A: Mathematical, Physical and Engi-
neering Sciences, 150(871):552–575, 1935.

71

[4] Shankar Bhamidi, Amarjit Budhiraja, and Ruoyu Wu. Weakly interacting par-
ticle systems on inhomogeneous random graphs, 2016.

[5] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient belief propagation
for early vision. International Journal of Computer Vision, 70(1):41–54, Oct
2006.

[6] Nicolas Gast. The Power of Two Choices on Graphs: the Pair-Approximation is
Accurate. In Workshop on MAthematical performance Modeling and Analysis,
Portland, United States, June 2015.

[7] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-6(6):721–741, Nov 1984.

[8] J. M. Hammersley and P. E. Clifford. Markov random fields on finite graphs
and lattices. Unpublished manuscript, 1971.

[9] Yashodhan Kanoria and Andrea Montanari. Majority dynamics on trees and
the dynamic cavity method. Ann. Appl. Probab., 21(5):1694–1748, 10 2011.

[10] Daphne Koller, Nir Friedman, Lise Getoor, and Benjamin Taskar. Graphical
models in a nutshell. In L. Getoor and B. Taskar, editors, An Introduction to
Statistical Relational Learning. MIT Press, 2007.

[11] Daniel Lacker, Kavita Ramanan, and Ruoyu Wu. Preprint, 2018.

[12] Thomas M. Liggett. Stochastic models of interacting systems. Ann. Probab.,
25(1):1–29, 01 1997.

[13] Andrey Y. Lokhov. Dynamic cavity method and problems on graphs. Theses,
Université Paris Sud - Paris XI, November 2014.

[14] Andrey Y. Lokhov, Marc Mzard, and Lenka Zdeborov. Dynamic message-
passing equations for models with unidirectional dynamics. 2014.

[15] Maia Martcheva. Introduction to Epidemic Modeling, pages 9–31. Springer US,
Boston, MA, 2015.

[16] Michael Mitzenmacher. The power of two choices in randomized load balancing.
IEEE Trans. Parallel Distrib. Syst., 12(10):1094–1104, October 2001.

[17] Karl Oelschlager. A martingale approach to the law of large numbers for weakly
interacting stochastic processes. Ann. Probab., 12(2):458–479, 05 1984.

[18] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1988.

72

[19] Robin Pemantle. The contact process on trees. Ann. Probab., 20(4):2089–2116,
10 1992.

[20] Kavita Ramanan. Graphical models and their applications. Course Notes, Per-
sonal Communication, 2012.

[21] Nikkala A. Thomson and Stephen P. Ellner. Pair-edge approximation for het-
erogeneous lattice population models. Theoretical Population Biology, 64(3):271
– 280, 2003. Understanding the role of environmental vatiation in population
and community dynamics.

73

	Introduction
	Interacting Particle Systems
	Formal Definitions
	Probabilistic Graphical Models
	Discrete Time Interacting Particle Systems
	Continuous Time Interacting Particle Systems

	Examples
	The SIR Process
	The Contact Process
	Load Balancing
	Ising
	Potts

	Conditional Independence and the Double Boundary

	Existing Approximations
	Mean Field Approximation
	Description
	Implementation

	Cavity Methods
	Cavity Method for Graphical Models
	Dynamic Cavity Method
	Filling in the Dynamic Cavity Method

	Moment Approximations
	Notation
	The Power of Two Choices on Graphs: The Mean Field Approximation
	The Power of Two Choices on Graphs: the Pair-Approximation is Accurate [Section 2.2]gast15

	Local Recursions
	Ring
	The Local Sampling Algorithm on a Ring
	Local Recursions on a Ring

	Local Recursions for More General Graphs
	Revisiting The Ring
	d-Regular Trees
	Load Balancing on a Ring

	The -Approximation
	Pair and Triplet-approximations for the Ring

	Results
	Implementation Details
	Small T Exact Trajectory
	Approximate Time Marginals
	Approximate Equilibrium
	Comparison with the Pair-Approximation

	Conclusion and Future Work
	Appendix
	Proof of Lemma 2.1.
	Proof of Remark 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.5.
	The ``Triplet" Approximation for the SIR Process on a Ring (Full Particle Trajectories)
	Full Derivation of the -Approximation
	System Organization

