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Abstract

Computer Vision and Information Theory have been linked since the 1960s. In this paper we explore the
theory and implementation of recent methods which lie in their intersection. Specifically, we examine the
effectiveness of deep learning in performing variational Bayesian inference with Variational Auto-encoders
(VAEs).

I. Introduction

In a seminal 2012 paper, three researchers
from the University of Toronto changed
the landscape of Computer Vision. Using

deep convolutions neural nets, [KSH12] per-
formed remarkably better than the previous
state-of-the-art in the Imagenet Large Scale
Visual Recognition Challenge (ILSVRC). This
sparked the beginning of an artificial intelli-
gence boom driven by deep learning.

The mathematics of deep learning is not
novel. As introduced by [RHW86], the cru-
cial theory has existed for 30 years. The advent
of deep learning has been driven instead by
unprecedented computing power, specifically
of Graphics Processing Units (GPUs). Accord-
ingly, researchers have been able to use deep
learning to pursue problems where solutions
were previously thought to be out of reach.
One such area of renewed attention is varia-
tional Bayesian methods.

As discussed in [Att00; FR12; KW13], vari-
ational Bayesian methods approximate in-
tractable integrals which arise in Bayesian in-
ference. They are an alternative to more tradi-
tional techniques such as Markov Chain Monte
Carlo (MCMC).

Variational auto encoders were introduced
by [KW13], and have since found a myriad of
applications including [Esl+16] and [Nez+18].
The defining contribution of the VAE was to
exploit the representational capacity of deep

neural networks to approximate both the vari-
ational distribution and likelihood function.

In this paper we examine the theory and im-
plementation of modern techniques which com-
bine deep learning and variational Bayesian in-
ference. We begin by surveying relevant math-
ematics and conclude with our own implemen-
tation and experiments.

II. Preliminary Mathematics

i. Bayesian Inference

We begin with the classic problem of Bayesian
inference. Given only a prior p(z) and likeli-
hood p(x|z) we are interested in the posterior
probability p(z|x). Using Bayes’ theorem we
may express the posterior as follows.

p(z|x) = p(x|z)p(x)∫
p(x|z′)p(z′)dz′

(1)

However, in most cases the integral in the de-
nominator is intractable. This intractability
may occasionally be surmounted using tech-
niques such as MCMC. In this paper we focus
instead variational inference methods.

ii. Kullback-Leibler (KL) Divergence

The Kullback-Leibler divergence (also referred
to as the relative entropy) measures the diver-
gence of two probability distributions. For den-
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sities p and q the KL divergence is defined as

DKL(p(x)‖q(x)) =
∫

R
log

p(x)
q(x)

p(x) dx (2)

and satisfies the following property.
Lemma 1. DKL(p(x)‖q(x)) ≥ 0 with equal-

ity if and only if p = q.
Proof. This follows from Jensen’s inequal-

ity. Recall that for any convex function φ and
random variable X, Jensen’s inequality asserts
that

E[φ(X)] ≥ φ (E[X]) (3)

with equality if and only if φ is linear or X is
constant. The inequality is reversed when φ is
concave. Using that φ(x) = − log x is a convex
function we observe

DKL(p(x)‖q(x))

=
∫

R
log

p(x)
q(x)

p(x) dx
(4)

= EX∼p

[
log

p(X)

q(X)

]
(5)

= EX∼p

[
− log

q(X)

p(X)

]
(6)

≥ − logEX∼p

[
q(X)

p(X)

]
(7)

= − log
∫

R

q(x)
p(x)

p(x) dx (8)

= − log 1 = 0 (9)

since q is a density and so
∫

x∈R
q(x) dx = 1.

III. Variational Bayesian Methods

i. The Model

Consider a data set of N images x =
{x1, ..., xN}. Images are high dimensional with
complex structure and so it is useful to consider
more tractable latent variables z = {z1, ..., zN}.
Intuitively, image xi is generated by the latent
variable zi ∈ Rk. zi may be interpreted as
the k-dimensional encoding of xi. Accordingly,
we are often interested in the latent variables
rather than the images themselves. In an ide-
alized example where each xi is a photo of a

single handwritten digit, each zi may encode
the digit which appears in xi.

We assume that the marginal, prior, and like-
lihood can be parameterized by θ. We then
write the marginal as

pθ(x) =
∫

pθ(x|z)pθ(z) dz. (10)

Moreover, we assume that each (xi, zi) is inde-
pendent of every other (xj, zj) and so

pθ(x|z)pθ(z) =
N

∏
i=1

pθ(xi|zi)pθ(zi). (11)

We have two main objectives.

1. Find the parameter θ∗ which maximizes
the likelihood of the marginal pθ∗(x). The
images x are called the evidence and we
would like to find a parameter θ∗ for
which the evidence is likely to be ob-
served.

2. Approximate the posterior pθ∗(z|x). We
will then be able to obtain the latent vari-
able corresponding to an image.

As we have discussed, it is often intractable
to compute the posterior directly. We instead
make use of variational inference methods.

ii. Variational Inference

Under variational inference we introduce a dis-
tribution q parameterized by φ which approx-
imates some true posterior. Objectives 1 and
2 may then be achieved by finding θ, φ which
maximize

Lθ,φ = EZ∼qφ

[
log

pθ (X, Z)
qφ (Z|X)

]
. (12)

We may also write Lθ,φ in terms of the relative
entropy as follows.

Lθ,φ = EZ∼qφ

[
− log

qφ (Z|X)

pθ (X|Z) pθ(Z)

]
(13)

= −DKL(qφ(z|x)‖pθ(z))

+EZ∼qφ
[log pθ(X|Z)]

(14)
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In modern literature, Lθ,φ is often referred to
as the evidence lower bound. By maximizing this
lower bound, we may simultaneously accom-
plish objectives 1 and 2.

Lemma 2. log pθ(x) ≥ Lθ,φ, thus maxi-
mizing Lθ,φ in θ space will in turn maximize
log pθ(x).

Proof.

log pθ(x)

= log
∫

pθ(x, z) dz
(15)

= log
∫ pθ(x, z)

qφ(z|x)
qφ(z|x) dz (16)

= logEZ∼qφ

[
pθ(X, Z)
qφ(Z|X)

]
(17)

≥ EZ∼qφ

[
log

pθ (X, Z)
qφ (Z|X)

]
(18)

= Lθ,φ (19)

where equation 18 follows from Jensen’s in-
equality as log is concave.

Lemma 3. DKL(qφ(z|x)‖pθ(z|x)) ∝ −Lθ,φ,
thus maximizing Lθ,φ in φ space will in
turn minimize the divergence of qφ(z|x) from
pθ(z|x).

Proof.

DKL(qφ(z|x)‖pθ(z|x))

= EZ∼qφ

[
log

qφ(Z|X)

pθ(Z|X)

] (20)

= EZ∼qφ

[
log

qφ(Z|X)

pθ(X, Z)

]
+ log pθ(X) (21)

∝ −Lθ,φ (22)

as log pθ(X) does not depend on φ, q.
And so we have restated the challenge of

inference as an optimization problem.

IV. Learning by SGD

In a new approach to variational inference, qφ

and pθ are represented using a neural network.
A neural network is a highly parameterized
function approximator trained using some loss
function L. Stochastic gradient descent (SGD)
is used to update the parameters of the net-
work by back-propagation [RHW86] in order

to minimize the associated loss. As an opti-
mization, we approximate the true loss L by
L̃. Stochasticity arises by computing L̃ from a
random subset of observation samples.

Stochastic gradient descent is the process of
moving along the negative gradient of the loss
surface until convergence to a minimum. At
iteration n, let

(θn+1, φn+1) = (θn, φn)− η∇θ,φ L̃ (23)

for some learning rate η (which may depend
on n).

From equation 12 and 14 we have a loss func-
tion L = −Lθ,φ which we wish to minimize.
However, back-propagation requires that L̃ is
differentiable with respect to the parameters of
the network. Accordingly, we must restate the
loss to satisfy this condition.

i. The φ Derivative

We first consider the problem of taking φ
derivatives of the form

∇φEZ∼qφ
[ fφ(Z, X)] (24)

for some function fφ. The naive Monte Carlo
estimate of this expectation is given by

EZ∼qφ
[ fφ(Z, X)] ≈ 1

L

L

∑
`=1

fφ(z(`), x) (25)

where z(`) ∼ qφ. However, the above expres-
sion is not differentiable with respect to φ as
samples are taken from qφ.

We may rely instead on the so-called repa-
rameterization trick discussed in [KW13]. Let us
write Z as a deterministic function of X and
some auxiliary independent random variable ε
with density h.

Z = gφ(ε, X) (26)

Without loss of generality, consider
Z∼N (X, φ2). Then we may write

Z = gφ(ε, X) = X + φ ∗ ε (27)

where ε∼N (0, 1) has zero mean and unit vari-
ance.
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Using this reparameterization trick we may
rewrite the expectation term in equation 24
as

Eε∼h[ fφ(gφ(ε, X), X)] (28)

which has Monte Carlo estimate

1
L

L

∑
`=1

fφ(gφ(ε
(`), x), x) (29)

where ε(`) ∼ h. Assuming fφ and gφ are differ-
entiable, this revised Monte Carlo estimate is
itself differentiable with respect to φ.

ii. The θ Derivative

As x is observed, computing the partial deriva-
tive of Lθ,φ with respect to θ is less involved.
We must compute the θ derivative of the form

∇θEZ∼qφ [Γθ(X, Z)] (30)

for some function Γθ . However, the expectation
in the equation above may be approximated by
the Monte Carlo estimate

1
L

L

∑
`=1

Γθ(x, z(`)) (31)

where z(`) ∼ qφ. When Γθ is sufficiently
smooth this Monte Carlo estimate differen-
tiable with respect to θ.

V. Variational Auto-Encoders

(VAEs)

Introduced by [KW13], a variational auto-
encoder is a deep learning approach to varia-
tional inference.

Let I be the identity matrix and N (·; µ, Σ)
denote the density of a multivariate normal dis-
tribution with mean µ and covariance matrix
Σ. In a variational auto-encoder, the follow-
ing is assumed for the likelihood, prior, and
approximate posterior qφ:

• The likelihood pθ(x|z) factors as
∏N

i=1 pθ(xi|zi) where each pθ(xi|zi)
follows N (xi; Dµ

θ (zi), Dσ
θ (zi)

2 ∗ I). The

function Dθ = (Dµ
θ , Dσ

θ ) is represented by
a neural network.
If the output is binary (i.e. the pixel is
black or white) then a Bernoulli distribu-
tion with learned parameters may be used
instead.

• The prior pθ(z) factors as ∏N
i=1 pθ(zi)

where pθ(zi) = N (zi; 0, I).
• The approximate posterior qφ(z|x) fac-

tors as ∏N
i=1 qφ(zi|xi) where qφ(zi|xi) =

N (zi; Eµ
φ(xi), Eσ

φ ∗ I). The function Eφ =

(Eµ
φ , Eσ

φ) is similarly represented by a neu-
ral network.

We now reexamine the type of loss function L
to be minimized. As L = −Lθ,φ,

L = DKL(qφ(z|x)‖pθ(z))

+EZ∼qφ
[− log pθ(X|Z)].

(32)

And so L decomposes into two terms

L = LKL-Divergence + LCross-Entropy (33)

which we may consider separately. Note that
we use random samples of the data (batches)
to calculate an approximate loss L̃. Since

L = EZ∼qφ

[
log

∏n
i=1 qφ(Zi|Xi)

∏n
i=1 pθ(Zi)

]
+EZ∼qφ

[
− log

n

∏
i=1

pθ(Xi|Zi)

] (34)

=
N

∑
i=1
EZi∼qφ

[
log

qφ(Zi|Xi)

pθ(Zi)

]

+
N

∑
i=1
EZi∼qφ

[− log pθ(Xi|Zi)]

(35)

we may let

L̃ = L̃KL-Divergence + L̃Cross-Entropy (36)

= ∑
i∈Im

DKL(qφ(zi|xi)‖pθ(zi))

+ ∑
i∈Im

EZi∼qφ
[− log pθ(Xi|Zi)]

(37)

for some batch Im of {1, ..., N}.
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i. KL-Divergence Loss

Both qφ(zi|xi) and pθ(zi) are multivariate nor-
mal distributions by our assumptions. Thus,
DKL(qφ(zi|xi)‖pθ(zi)) is the KL divergence of
N (zi; Eµ

φ(xi), Eσ
φ ∗ I) and N (zi; 0, I). Therefore

DKL(qφ(zi|xi)‖pθ(zi))

= −1
2

k

∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

) (38)

where µ = Eµ
φ(zi) and σ = Eσ

φ(zi) are both k
dimensional. Equation 38 follows from simple
algebra and a full derivation may be found in
Appendix B of [KW13].

ii. Cross Entropy Loss

The cross entropy loss is more straightforward
to compute in practice, as most neural net
packages include existing implementations. In
most, a single zi is sampled from qφ(zi|xi),
then EZi∼qφ

[− log pθ(Xi|Zi)] is approximated
by − log pθ(xi|zi). This works in practice as
there are many samples in each batch.

VI. VAE Results (MNIST)

We implement a simple VAE using pytorch and
trained it on the MNIST dataset. The MNIST
data consists of 60000 handwritten digits, each
a 28× 28 single-channel image. The code may
be found at https://github.com/mwortsma/
modern_variational_learning.

Figure 1: 100 images taken from MNIST

i. Reconstructions

We first showcase results of reconstructing ob-
servations. We generate a reconstruction as
follows.

1. Choose xi at random from x = {x1, ..., xn}.

2. Sample zi from qφ(·|xi).

3. Sample ri from pθ(·|zi). We call ri the re-
construction of xi.

The following reconstructions were gener-
ated from 20-dimensional latent vectors. Fig-
ures 2 and 3 are generated after learning θ and
φ using the given number of images. Figures
4 and 5 are generated after learning θ and φ
for a given number of epochs. An epoch is
defined as one pass through the entire dataset
of images.

Figure 2: 103 Images Figure 3: 104 Images

Figure 4: 1 Epoch Figure 5: 50 Epochs

We similarly generate figures 7 and ?? using
2-dimensional latent vectors.
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Figure 6: 1 Epoch Figure 7: 50 Epochs

ii. Random Samples

We consider 20-dimensional latent vectors and
showcase random samples. We generate a ran-
dom sample as follows.

1. Sample zi from N (·; 0, I).

2. Sample ri from pθ(·|zi). We call ri the ran-
dom sample.

Figure 8: 103 Images Figure 9: 104 Images

Figure 10: 1 Epoch Figure 11: 50 Epochs

iii. Visualizing the MNIST Manifold

We can visualize the manifold of MNIST im-
ages when the latent vectors are two dimen-
sional.

Figure 12: The MNIST Manifold

To generate image xi at row r and column c
of Figure 12, we define the latent vector zi as

zi =

[
N−1 ( r

R+1 ; 0, 1
)

N−1 ( c
C+1 ; 0, 1

)] (39)

where N−1 is the inverse CDF of the normal
distribution, R is the total number of rows, and
C is the total number of columns. We then
sample xi from pθ(·|zi).

iv. Random Walks in Latent Space

Finally, we return to a 20 dimensional latent
space and consider a random walk of length
M = 100. We generate the latent vector z1, cor-
responding to the first state in the walk, with
a random sample from N (·; 0, I). Each subse-
quent zi has a latent vector which is perturbed
from zi−1 by a sample from N (·; 0, I) which is
scaled by

√
M = 0.1. Each image xi is then

sampled from pθ(·|zi). Figure 13 shows the
results of this walk, with initial state in the
top-left corner.

Figure 13: A Random Walk in Latent Space
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