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Abstract

Recent advances in deep learning have furthered our un-
derstanding of image style. Equipped with new technology,
we can transfer images across domains and create novel
images of a given style. In this work, we survey a variety
of generative models and discuss their applications to the
problem of style transfer. Moreover, we present an interac-
tive framework for understanding generative models.

Figure 1. Providence in the style of Monet

1. Introduction

The characterization or transfer of style has long been
considered a challenging problem. However, modern gen-
erative models have pushed the boundaries of what was pre-
viously thought possible.

In this paper, we aim to understand modern generative
models and explore their applications in style transfer. Ad-
ditionally, we develop an interactive framework to visualize
the latent space and explore further methods for interaction.

This work is organized as follows. In Section 2, we sur-
vey the field of deep generative models and discuss their ap-
plications to style transfer. Specifically, we focus on varia-
tional auto-encoders (VAEs) and generative adversarial net-
works (GANs). In Section 3, we present our own methods
and experiment with generative frameworks. Finally, we
discuss opportunities for interaction in Section 4.

2. Related Work

On Unifying Deep Generative Models

In recent years, remarkable results have been achieved with
VAEs and GANs. In [3], Hu et al. show that these two
paradigms can be unified under the larger framework of
generative models. As such, we begin our survey of related
work with an overview of modern generative learning.

Images are high dimensional with complex structure.
Therefore, a distribution p(x) over natural images is in-
tractable. Modern generative models consider instead a
more tractable latent variable z. An image x is then said
to be generated by some z, and z may be considered the
low dimensional embedding of x.

In this powerful approach, the prior p(z) and likelihood
p(x|z) are both easy to sample from. For example, p(z)
is often a multivariate normal with mean 0 and co-variance
matrix I . Accordingly, one may sample x by first sampling
z from p(z) followed by a sample x from p(x|z).

Variational Auto-Encoders

Introduced by Kingma and Welling in [7], a variational
auto-encoder is a deep learning approach to variational
inference. A so-called variational distribution q(z|x) is
learned as an approximation for p(z|x). The true posterior

p(z|x) = p(x)p(x|z)∫
z′ p(x)p(x|z′)

(1)

is often out of reach as the integral which appears in the de-
nominator is intractable. The defining contribution of the
VAE is to exploit the representational capacity of deep neu-
ral networks to approximate both the variational distribution
and likelihood. Figure 2 shows a VAE, with trapezoids de-
noting deep neural networks.
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Figure 2. A Variational Auto-Encoder

In practice, the likelihood is parameterized by θ and the
variational distribution is parameterized by φ. These param-
eters θ, φ are tuned so that the output x̃ resembles the input
x. Intuitively, z may then be interpreted as a low dimen-
sional embedding of x. The loss is then a function of θ, φ
as follows.

Lθ,φ =Ez∼qφ [− log pθ(x|z)]
+DKL (qφ(z|x) ‖ pθ(z))

(2)

The cross-entropy term Ez∼qφ [− log pθ(x|z)] may be in-
terpreted as a reconstruction loss while the KL-Divergence
DKL (qφ(z|x) ‖ pθ(z)) imposes the desired prior on z.

A prior pθ(z) = N (z; 0, Ik) is often used for the k-
dimensional latent vector z. Here, N denotes the pdf of the
multivariate normal and Ik is the k× k identity matrix. The
variational distribution qφ(z|x) is then N (z;µφ(x), Ik ∗
σ2
φ(x)), where µφ(x) and σ2

φ(x) are implemented via a neu-
ral network.

Conditional Variational Auto-Encoders

Kingma et al. proposed a new approach to semi-supervised
learning with deep generative models in [6]. In particular,
the “generative semi-supervised model” establishes a useful
framework for conditioning generation on a particular latent
variable. The conditional VAE (CVAE) operates under the
following model of the data: Consider a set of observations
and corresponding class labels {(xi, yi)} , i ∈ {1, . . . , N}
where xi ∈ Rd and discrete yi ∈ {1, . . . , L}. We assume
that observation x is generated by both a latent code z as
well as a latent class code y, with a categorical prior on y in
addition to a Gaussian prior on z.

As a result, we describe the variational distribution
qφ(z|x, y) = N (z;µφ(x, y), Ik ∗ σ2

φ(x, y)). An additional
variational approximate posterior is introduced through
the classifier, qφ(y|x) = Cat(y;πφ(x)). The likelihood
pθ(x|z, y) is accordingly conditioned on both z and y. As
before, µφ, σ2

φ, and πφ are represented by neural networks.
Learning the parameters θ, φ is accomplished by maxi-

mizing the variational lower bound on the marginal likeli-
hood.

Generative Adversarial Networks

Generative adversarial networks have been integral to the
recent success of deep learning. Proposed by Goodfellow

et al. in [2], they have since found a variety of applications.
GANs use a minimax framework consisting of a Generator
G and Discriminator D. The interaction between G and D
is illustrated by Figure 3.

Figure 3. A Generative Adversarial Network

The generator is given noise and aims to produce images
which appear as though they are drawn from the dataset.
Alternatively, the discriminator’s goal is to determine the
probability that a given image is included in the dataset. The
discriminator is either given a real image x from the dataset
or the generated image x̃ = G(z). The loss is then

L(G,D) =min
G

max
D

Ex∼pdata [logD(x)]

+ Ez∼pz [log (1−D(G(z)))]
(3)

where Ex∼pdata [logD(x)] pushes the discriminator to cor-
rectly identify images from the dataset. Alternatively,
Ez∼pz [log (1−D(G(z)))] encourages the generator to cre-
ate realistic fake images while incentivizing the discrimina-
tor to identify these images as fake.

Neural Style Transfer

Gatys et al. utilize a fully convolutional approach to style
transfer in [1]. They consider the problem of taking two im-
ages, p and a, and outputting x with the content of p but the
style of artwork a. The defining contribution of the paper is
that Convolutional Neural Networks (CNNs) are capable of
separating the paper’s representations of style and content.
In their 19-layer VGG-Network, they encode a representa-
tion of content from filter responses to p at each layer of the
network. The style representation is defined as the response
of a different filter bank to a. They minimize the following
loss term to produce the output image x with the style of a
and content of p, where α and β are constants.

Ltotal(p, a, x) = αLcontent(p, x) + βLstyle(a, x) (4)

Here, Lcontent(p, x) measures the distance between the
content representations of p and x while Lstyle(a, x) mea-
sures the distance between style representations of a and
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x. The gradient is then computed with respect to x and an
output is produced that jointly minimizes content loss and
style loss. The approach iteratively produces a ‘better’ x for
each input pair (p, a). Our implementation of this net took
roughly a minute to compute x on a CPU with inputs of size
444x444 and an output of size 128x128.

Figure 4. An individual in Picasso’s style using the method of [1].

Pix2Pix

Isola et al. use a GAN for image-to-image translation in
[4]. They consider image pairs from two data sets A and B.
For each image pair (z, x), x ∈ B is the translation of z ∈
A across domains. Their system, as illustrated by Figure
5, is then very similar to a traditional GAN. However, the
discriminator now observes image pairs of the form (z, x)
or (z, x̃). The discriminator aims to classify pairs (z, x) as
real and pairs (z, x̃) as fake. Here, x̃ = G(z) as defined
below.

Figure 5. Pix2Pix

In addition to the traditional GAN loss, Pix2Pix intro-
duces an L1 loss ‖G(z)− x‖1. Isola et al. achieve impres-
sive results translating facades to buildings, day to night,
edges to photos, and more. However, they require that their
data consist of image pairs, which may be limiting.

CycleGAN

In [10], the authors present a mechanism for translating
images across domains. Unlike Pix2Pix, they do not re-
quire that the dataset consist of image pairs. Instead, they
need only a set of images from domain A and a set of im-
ages from domain B. The authors then have two GANs:

(GA, DA) maps from domain A to B and (GB , DB) maps
in the opposite direction. In addition to the GAN loss
found in equation 3, the authors include a cycle-consistency
loss Lcycle. This loss ensures that GA(GB(x)) ≈ x and
GB(GA(y)) ≈ y. Formally, this cycle consistency loss is
given as

Lcycle(GA, GB) =Ex∼pA [‖GB(GA(a))− x‖1]
+ Ey∼pB [‖GA(GB(y))− y‖1].

(5)

3. Methods and Results

In this section, we detail our exploration and experi-
mentation with generative models. We use the PyTorch
deep learning framework to create our own implementa-
tions. The code may be found at https://github.
com/mwortsma/elements_of_style.

3.1. MNIST VAE

We begin by implementing a vanilla VAE on the MNIST
dataset. MNIST consists of a training set of 60000 hand-
written digits, each formatted as a 28× 28 grayscale image.

We use fully-connected units with ReLU activations.
The encoder qφ(z|x) and decoder pθ(x|z) consist of one
hidden layer each. Despite the simplicity of the network,
we obtain meaningful results.

As illustrated by Figure 6, the network is capable of re-
constructing images. On the left is a random subset x of
the dataset. We then sample z ∼ qφ(z|x) and reconstruct
x ∼ pθ(x|z) on the right.

Figure 6. Reconstructions using a 10-dimensional latent z.

Recall that our generative framework should allow us to
construct novel images by sampling from pθ(x). We may
do so by first sampling z fromN (z; 0, Ik) followed by sam-
pling x from pθ(x|z). As illustrated by Figure 7, this pro-
cess creates semi-realistic digits.

3

https://github.com/mwortsma/elements_of_style
https://github.com/mwortsma/elements_of_style


Figure 7. Samples from pθ(x) using a 10-dimensional latent z.

Finally, we aim to visualize the latent space. We begin
by considering the case where z is a 2-dimensional vector.
In Section 4.1, we use interaction to extend our visualiza-
tions to higher dimensions. We also experiment with using
PCA to visualize higher dimensions but find that it is unsuc-
sessful. This is likely due to the imposed prior on z.

Figure 8. Visualizing a 2-dimensional latent space.

In Figure 8, each axis corresponds to a dimension
of z. At each point (z1, z2) we show a sample from
pθ(x|(z1, z2)). This is similar to the manifold visualization
of [7].

Next we consider a subset of the dataset and place
the corresponding 2-dimensional embedding vectors on a
Cartesian plane. We show the results in Figure 9. Each
point is also color-coded to correspond with its associated
class label and we place some corresponding images on the
plane. It is interesting to note that we observe some clusters
which correspond to class labels. This suggests that we may
learn a lot about the data from the embedding space.

Figure 9. Placing 2-dimensional embeddings on a Cartesian plane.

3.2. MNIST CVAE

As illustrated by Figure 9, the latent space contains infor-
mation about both style (i.e. handwriting) and content (the
digits themselves). In order to better separate out these two
characteristics, we implement the aforementioned CVAE
with some notable differences.

The probabilistic encoder qφ(z|x, y), classifier qφ(y|x),
and decoder pθ(x|z, y) are implemented using MLPs with
500 hidden units each and Softplus activations, as in [6].
In order to ensure valid parameterization for Cat(y;πφ(x)),
we transform the output of the classifier using the softmax
function.

We had initially conditioned the encoder only on x, but
found that conditioning on both x and y significantly im-
proved results when constructing style analogies, as shown
in Figure 10.

Rather than implement the semi-supervised model de-
scribed in the paper, we focus on the supervised case, as
this was most relevant to the problem of style transfer. Our
goal is primarily to separate content from style in the latent
encoding of an image. MNIST provides a concrete notion
of content with class labels based on digits.

Figure 10. MNIST analogies, conditioning the encoder either only
on x (left) or on both x and y (right). For an input image x (left
column), we run inference to obtain latent “style” vector z and
vary latent y across digit classes 0-9 (right columns).
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3.2.1 Convolutional Architecture

In addition to the fully-connected approach, we follow [5]
and implement a convolution-based CVAE. We introduce
ϕz(x) and ϕy(x), which learn to extract salient features
from an image. Each feature is used in lieu of x as input
for the MLPs. We can now describe the variational distri-
bution in terms of ϕz and ϕy:

qφ(z|x) = N (z;µφ(ϕz(x)), Ik ∗ σ2
φ(ϕz(x)))

qφ(y|x) = Cat(y;πφ(ϕy(x)))

The probabilistic decoder pθ(x|z, y) is replaced by a
deep convolutional network. The network learns to up-
sample a joint latent feature ψθ(z, y) via groups of trans-
posed convolutions, batch normalization, and ReLU activa-
tion. We represent ψθ as an MLP with 256 hidden units.

The entire convolutional CVAE is trained end-to-end.

Figure 11. Convolutional architecture for ϕz(x), which is used in
the encoder. For an input image, successive convolution, batch
normalisation and ReLU activation is applied at each layer. The
final feature is a flattened 50176-dimensional vector.

Figure 12. Convolutional architecture for ϕy(x), which is used in
the classifier. For an input image, successive convolution, ReLU
activation, max pooling, and dropout is applied, in that order. The
final feature is a flattened 1600-dimensional vector.

We compare the effectiveness of the convolutional ap-
proach in its ability to construct analogies across MNIST
digit classes. As illustrated by Figure 16, the results dis-
play a more consistent style across classes when compared
to Figure 10. In addition, analogies generated from the con-
volutional CVAE suffer from less ambiguity of content.

Figure 13. MNIST analogies constructed with a conditional VAE.

3.3. Cross-Dataset Analogies using CVAEs

We show a potential application of CVAEs for transfer-
ring style across datasets. First, we learn a convolutional
CVAE on MNIST digits. We then run inference on exam-
ples drawn from FashionMNIST [9], a dataset with identi-
cal image size and structure to MNIST. Analogies are con-
structed as before, by sampling z ∼ qφ(z|x) and varying y
across each of the 10 class labels.

Although this is not a well-defined problem, we observe
digit reconstructions that match the general “shape” of the
input image. We consider this a positive result, and an inter-
esting method that could be explored further in future work.

Figure 14. MNIST analogies of FashionMNIST images. Note how
the shape of the shoe is reflected in its digit analogies.

3.4. Variational Transfer Encoder

In line with the idea of cycle consistent loss in [10], we
investigate the idea of training a VAE on a dataset of image
pairs with identical content but different styles. At a high
level, the approach in [10] simultaneously trains two VAEs
that have shared generators GA and GB such that for an
image x in image domain B, x ≈ GA(GB(x)), and vice
versa. The intent of our approach is to train the encoder
to strip input images of the source style and the decoder to
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reinsert the target style into the underlying content vector.
We implement a VAE with an encoder containing four

convolutional layers and two fully-connected layers and a
decoder containing two fully-connected layers and four de-
convolutional layers. The purpose of this net is to transfer
the style of the target image to the source image and is cor-
respondingly labeled a Variational Transfer Encoder (VTE).

Figure 15. Proposed VTE model

The facades dataset of Pix2Pix provides image pairs of
differing style but identical content. Loss is computed by
summing the MSE and KL-Divergence of the VTE output
and the target image. With this architecture and dataset,
loss plateaus at a high value after only 50 epochs. This re-
sult suggests that without the adversarial loss term present
in [10] the gradient is hard to descend. Additionally, the
net does not enforce that the intermediary vector actually
contains a content representation of the input image.

4. Opportunities for Interactions

4.1. Exploring the Latent Space

Recall that the learned embeddings z from our VAEs
are distributed N (0, Ik). An effective embedding represen-
tation would return reasonable decoded results for values
sampled close to this mean. In order to understand how
effectively the model represents the data, we implement a
tool to visually explore the space around the mean of this
distribution.

We present an interactive tool with sliders for each di-
mension of z which allows the user to modify the values of
the latent code directly. As the sliders are changed, the im-
ages displayed along the top of the widget update in real-
time to match the newly-decoded latent z vector. When
using a vanilla VAE, where reconstructions are not explic-
itly conditioned on class labels, the widget displays a single
image. Under the CVAE approach, the widget displays a
decoded image for each possible class label, presenting all
possible analogies for the selected z.

The widget provides a wealth of qualitative information
about the latent space. In general, we find that different di-
mensions encode distinct stylistic qualities of the resulting
image, such as slant, boldness, curvature, or width. Ex-
ploring the latent space with this tool provides meaningful
insight. The widget may aid in indicating when we have too
many or too few latent dimensions.

Figure 16. The slider-based widget

4.2. Music Videos

Finally, we explore interactions between style transfer
and music. We believe that this technique can be used in
movies and music videos. Although we do not achieve suc-
cess, we hope that our exploration encourages future work.

We train CycleGAN on Monet2Photo as in [10]. We
then experiment with a variety of techniques to couple style
transfer and music. For each technique, we consider an in-
put video of frames i1, ..., in. First, we construct the output
frame ok via a linear combination of the input frame ik and
input frame with style transfer applied. We let F be the
function which applies style transfer. In the case of Cycle-
GAN’s Monet2Photo, this is the generator GB . We let

ok = (1− dk) ∗ ik + dk ∗ F (ik) (6)

where dk ∈ [0, 1] measures how close frame ik is to a beat.
We compute dk by dividing the difference of the next beat
and the current time by the period of the music. The python
library Librosa is used to compute the beats. As seen in
elements of style/monet2photo.mp4, this pro-
duces the interesting effect of bursts of style occurring
alongside each beat. We use the song Pay No Mind off the
new album by Beach House.

Additionally, we experiment by adding Gaussian or uni-
form noise to our image before we apply style transfer. We
apply this noise as a function of ik’s closeness to a beat.
However, we may also apply this noise as a function of the
amplitude of the sound wave.

Figure 17. Interstate 195 in the style of Monet

6



As illustrated by Figures 1 and 17, each individual frame
appears in the style of Monet. However, we are unsuccess-
ful as there is no continuity between frames. The authors of
[8] present a remedy for this, which we will look to include
in our future work.

5. Conclusions and Future Work
We believe that a better understanding of generative

models will follow from the ability to explore and visual-
ize the latent space. Our interactive tool is a step in this
direction.

Moreover, we believe that interaction paired with style
transfer could produce a number of interesting effects. Mu-
sic is only the beginning. With the growing role of virtual
reality, humans could interact with a style-transferred envi-
ronment in VR. Notable challenges remain in making real-
time style transfer more effective, broadening its applica-
tions and pushing beyond restricted domains.
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