
APMA 1170 Mitchell Wortsman Fall 2017

Final Project

The PageRank Algorithm

1 Introduction

In 1998, two PhD students at Stanford proposed an algorithm that would transform
the internet and shape the modern world. Sergey Brin and Larry Page have since
used PageRank to create one of the most powerful and influential companies of the
21st century. In this report we describe the underlying theory of PageRank and
various methods of implementation.

2 Preliminaries

In order to examine the PageRank algorithm, it is imperative to examine the theory
of eigenvectors and eigenvalues, and how they emerge in the study of Markov chains.

2.1 Eigenvalues and Eigenvectors

Definition 2.1: Given a matrixA ∈ Rn×n, a non-zero vector v ∈ Rn is an eigenvector
of A with associated eigenvalue λ ∈ R if

Av = λv. (1)

There are various methods of finding the eigenvalues and eigenvectors of a matrix.
It immediately follows from equation 1 that (A− λI)v = 0 for v 6= 0 and so A− λI
must not be invertible. So every eigenvalue λ must solve det(A− Iλ) = 0.

Definition 2.2: An eigenvalue λ∗ of A is said to be the dominant eigenvalue if
|λ∗| > |λ̃| for all other eigenvalues λ̃ of A. The eigenvectors v∗ associated with λ∗

are said to be the dominant eigenvectors.

We will later study iterative methods for finding the dominant eigenvectors of A.

Theorem 2.1: A square matrix A and its transpose AT have the same eigenvalues.

proof. Consider an arbitrary eigenvector λ of A. As discussed, λ must solve the
equation det(A− λI) = 0. Since the determinant of a matrix is invariant under the
transpose operation we know that det((A−λI)T) = 0. However, since I is symmetric,
(A− λI)T = AT − λI and so λ solves det(AT − λI) = 0. We may now conclude that
λ is also an eigenvalue of AT as needed.

1

2.2 Markov Chains

Definition 2.3: A discrete time Markov chain over a finite state space X = {1, ..., n}
is a stochastic process {Xt}t∈N where the future state is dependent only on the present
state and not the past. Formally we say that

P(Xt+1 = xt+1|X1 = x1, ..., Xt = xt) = P(Xt+1 = xt+1|Xt = xt) (2)

P(Xt+1 = xt+1|Xt = xt) is said to be the transition kernel for time t+ 1.

In modeling many different systems it is often natural to make the assumption that
the future depends only on the present. Consider, for example, a college student
aimlessly surfing the web. The website that the student travels to next is likely
dependent on hyperlinks found on their current page which they may click on, and
not by links on past webpages.

Definition 2.4: Given a matrix P ∈ Rn×n, a Markov chain is said to be homogenous
if P(Xt+1 = i|Xt = j) = Pji for all t ∈ N and i, j ∈ X . In other words, a homogenous
Markov chain has a transition kernel that does not depend on time. P is called the
stochastic matrix for the Markov chain {Xt}t∈N.

There are conditions which any stochastic matrix P must satisfy. Each element Pji
takes values only in [0, 1] and each row in P must sum to 1.

Theorem 2.2: Every stochastic matrix P has a dominant eigenvalue of 1.

proof. Let ṽ = [1, 1, ..., 1]T . Since the rows of P sum to 1, it follows that P ṽ = ṽ and
so P has an eigenvalue of 1. We will now show that any other eigenvalue λ has an
absolute value less than 1. Assume for sake of contradiction that P has an eigenvalue
λ with |λ| > 1 and eigenvector v. Then P kv = λkv and so limk→∞ P

k = ∞. Since
v 6= 0 this implies that ∃k ∈ N, i, j ∈ X such that P k

ij > 1. This is a contradiction
as we know from Theorem 6.1 that P k is a stochastic matrix and therefore cannot
have entries which exceed 1.

3 Formulation

Many search engines existed before Google. However, PageRank’s novel approach
weights search results based on the value of the page and not solely the page’s content.
The idea is that a user prefers a given site if many other pages contain links to the
site. A highly linked page must be popular and therefore reliable. We are now ready
to provide an informal description of the algorithm:

1. Identify all pages that contain a given term.

2

2. Rank them in terms of their value.

The remainder of this section will be dedicated to formalizing the value metric, with
a series of improvements.

3.1 The Equation

Let X = {1, ..., n} be the set of all web pages and vi be the value of page i for all
i ∈ X . If page j has a link to page i we say that j → i.

If page i is linked to frequently, then we want to assign a higher value to page i.
Therefore we could let

vi =
n∑
j=1

1j→i (3)

where 1j→i is 1 if there exists a link from page j to page i and 0 otherwise. We
can also formulate equation 3 as a matrix vector multiplication. Let P be an n× n
matrix where Pij = 1 if page j contains a link to page i and Pij = 0 otherwise. We
will call P the connection matrix. Then v = [v1, ..., vn]T can be computed by

v = P ∗

1
1
...
1

 . (4)

Improvement 1: Let oj be the number of links on page j. If page j has many
outgoing links then presumably each individual link is less important. Therefore we
may modify the matrix P above by letting Pij = 1

oj
if page j contains a link to i and

0 otherwise. Equation 3 then becomes:

vi =
n∑
j=1

1j→i

oj
(5)

However, in order to avoid dividing by 0 in equation 3 we must make an important
adjustment which deals with “dead end” pages. If a page is a “dead end” (contains
no link to any other pages) we treat it as if it has a link to every other single page.
Therefore we redefine j → i as page j has a link to page i or page j has no outgoing
links.

Improvement 2: If page j is a very valued page and contains a link to page i then
page i should be assigned a high value as well. Therefore we may modify equation 5

3

as follows:

vi =
n∑
j=1

1j→i

oj
∗ vj (6)

Referring back to our matrix vector expression for v it is immediate that we may
rewrite the equation above as

v = Pv (7)

Where Pij =
1j→i

oj
as before. In other words, v is an eigenvector of P with associated

eigenvalue 1.

Moreover, notice that each column in P sums to 1 as

n∑
i=1

Pij =
n∑
i=1

1j→i

oj
=

1

oj

n∑
i=1

1j→i︸ ︷︷ ︸
=oj

= 1.

And so P T is a stochastic matrix. We may now conclude from theorem Therorem
2.1 and Therorem 2.2 that P is guaranteed to have an eigenvalue of 1 and that
this eigenvalue will be dominant.

Improvement 3: We know that P is guaranteed to have dominant eigenvalue 1
but we do not know that there is a unique eigenvector which corresponds to this
eigenvalue.

However, due to the vast nature of the web, the connection matrix P is sparse: P
likely contains O(n) non-zero entries as each page only links to a constant number
of other pages. The connection matrix from the root http://www.brown.edu is an
example of this phenomenon, as seen in figure 1. Moreover, we are likely to have
groups of web pages connected to each other and not connected to any other groups.
These groups are called clusters. For example, for the search term Brown we may
have a cluster corresponding to the color and another corresponding to the school.

Sparse and clustered connection matrices P will often not have a unique eigenvector
corresponding to the eigenvalue of 1. Consider, for example, the case of the search
term Brown. We may have pages 1 and 2 corresponding to the school and pages 3-5
corresponding to the color. The link structure may then resemble the figure below:

4

http://www.brown.edu

Page 1 Page 2

Page 3

Page 4

Page 5

In this case we would have connection matrix

P =

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

which we notice has eigenvectors v1 and v2, each corresponding to an eigenvalue of
1.

v1 =
[
1
2

1
2

0 0 0
]T

v2 =
[
0 0 1

3
1
3

1
3

]T
A ranking which assigns all the ‘color’ pages with high scores and ‘school’ pages with
low scores is just as valid as a ranking which assigns the ‘color’ pages with high scores
and ‘school’ pages with low scores. We would like to only have one valid ranking,
and therefore need one final improvement. For this improvement we may turn to
Theorom 3.1 and Theorom 3.2.

Theorom 3.1: If A ∈ Rn×n is a matrix with Aij > 0 for all i, j and has domi-
nant eigenvalue 1, then there is a strictly positive eigenvector associated with the
eigenvalue 1.

proof. Let v be an eigenvector such that Av = v. Now define v+ as v+i = |vi|. Notice
that Av+ ≥ v+ by the triangle inequality as

(Av+)i =
n∑
j=1

Aij|vj| ≥

∣∣∣∣∣
n∑
j=1

Aijvj

∣∣∣∣∣ = |(Av)i| = |vi| = v+i .

Assume for sake of contradiction that Av+ > v+. Then Av > (1 + ε)v+ for some
ε > 0. Additionally, Anv+ > (1 + ε)nv+ for all n ∈ N. By Gelfand’s formula (1941)
we know that that ρ(A) = limn→∞ ‖An‖1/n for any matrix norm, where ρ(A) is the
spectral radius of A, which in our case is 1. However, if Anv+ > (1 + ε)nv+ then
limn→∞ ‖An‖1/n ≥ (1 + ε). This implies that 1 ≥ 1 + ε which is a contradiction.

5

And so it must be the case that Av+ = v+. In other words, v+ is a non-negative
eigenvector with eigenvalue 1. To complete our proof we must show that v+ is strictly
positive. We know that v+i =

∑n
j=1Aijv

+
j . Since Aij > 0 and at least one v+j > 0 it

follows that
∑n

j=1Aijv
+
j > 0 and so v+i > 0 as needed.

Theorom 3.2: If A ∈ Rn×n is a matrix with Aij > 0 for all i, j has a dominant
eigenvalue of 1, then this eigenvalue has a geometric multiplicity of 1.

proof. From Theorom 3.1 we know that their is some strictly positive eigenvector
v > 0 associated with the eigenvalue 1. Assume for sake of contradiction that there
is another eigenvector u such that Au = u where u and v are linearly independent.
For sufficiently small ε > 0 we can clearly see that v − εu ≥ 0. Now let

ε∗ = sup{ε > 0 : v − εu ≥ 0}

Clearly v − ε∗u ≥ 0 but also notice that at least one entry in v − ε∗u is equal to 0,
call this entry i. Notice that A(v − ε∗u) = v − ε∗u and since v and u are linearly
independent by assumption it must be the case that at least one entry in v − ε∗u is
greater than 0. And so

vi − εui = 0 =
n∑
j=1

Aij(vj − ε∗uj)︸ ︷︷ ︸
>0 for at least one j

> 0

which is a contradiction.

So as our final improvement, we would like to make Pij strictly greater than 0 as this
would guarantee that the dominant eigenvalue is positive and unique. To do so we
may simply add a positive constant to the connectivity matrix we have previously
been working with. Define Cij =

1j→i

oj
and let Dij = 1/N for all i, j. Now let

P = (1 − r)D + rC for r ∈ (0, 1) so that the columns of P still sum to 1. As
before, our value vector v will be the dominant eigenvector of P , which we are now
guaranteed is positive and unique.

In summary, the value vector v we wish to find is the solution to following equation:(1− r)D + rC︸ ︷︷ ︸
P

 v = v with r ∈ (0, 1), Dij =
1

n
, Cij =

1j→i

oj
(8)

Since v > 0 and eigenvalues are unaffected by scaling, we will take our solution to
be the scaled version of v such

∑n
i=1 vi = 1.

3.2 The Surfer

Let us return to the example of a college student aimlessly browsing the web. We call
this student the surfer. At each time t, the surfer clicks on a link listed on the page

6

they are currently browsing with probability r ∈ (0, 1). However, with probability
1− r the student travels to a random website. If we let Xt ∈ X denote the web page
the student is on at time t, then {Xt}t∈N is a Markov chain. Moreover, Xt has the
following transition kernel:

P(Xt+1 = i|Xt = j) =
1− r
n

+
r1j→i
oj

(9)

Notice that equation 9 corresponds exactly to Pij from equation 8. Therefore, P T is
a stochastic matrix for {Xt}t∈N.

Definition 3.1: A vector π is said to be the stationary vector of a Markov chain
{Xt}t∈N with transition matrix T if πT = π.

Under the right conditions (see Theorem 6.2 for more information)

lim
t→∞

P(Xt = i) = πi

Letting π = vT and T = P T we now we arrive at an even more intuitive notion of
the value vi of each page. The value of page i is the fraction of time that the surfer
will spend on page i.

4 Eigenvalue/Eigenvector Problem Approach

We now begin to examine methods which find the value vector v that we defined.
In this section we use the information that v is the unique, dominant eigenvector of
equation 8 and simply look at algorithms for finding the dominant eigenvector.

4.1 The Power Method

We present now a simplified version of the Power Iteration Algorithm for the matrix
P we have defined and provide its proof. For any vector u ∈ Rn, write u as a linear
combination of orthonormal eigenvectors of P . Say that q1, ..., qm are the orthonormal
eigenvectors of P with associated eigenvalues λ1, ...λm then

u = a1q1 + ...+ amqm. (10)

From equation 10 it follows that

P ku = a1P
kq1 + ...+ amP

kqm = a1λ
k
1q1 + ...+ amλ

k
mqm (11)

However, we already know that P has dominant eigenvalue 1 and so λ1 = 1 and
λki → 0 as k → ∞ for all other eigenvalues λi since |λi| < 1. Therefore equation 11

7

implies that P ku → a1q1 as k → ∞. Recall that we are looking for the dominant
eigenvalue v and since v sums to 1 we may simply set v = aq1

‖aq1‖1
and we will be done.

In practice, instead of taking k →∞ we may just proceed until ‖Pv − v‖2 < ε. This
leaves us with our first implementation of the PageRank algorithm:

function [v, res] = simple power iteration(G, r, eps, max iter)
n = length(G);
D = (1/n)*ones(n,n);

% If a page has no outgoing links, treat it as if it has outgoing links
% to every other page (see Improvement 1).
e = ones(n,1);
for col = 1:n

if sum(G(:,col)) == 0; G(:,col) = e; end
end

% We may generate matrix C by multiplying G by O where O is diagonal
% with O(i,i) = 1/{# outgoing links from page i}
O = diag(1./sum(G));
C = G*O;

% Now form P from equation 8.
P = (1-r)*D + r*C;

% res will store the norm between v and v old
res = zeros(max iter,1);

v = (1/n)*ones(n,1);
for i = 1:max iter

v old = v;
v = P*v;
res(i) = norm(v - v old);
if res(i) < eps; break; end

end
v = v/sum(v);

end

We may run the algorithm and time it on 500 pages with the root of http://www.
brown.edu.

>> load('brown500.mat')
>> r = 0.85; eps = 0.0001; max iter = 100;
>> tic; [v, res] = simple power iteration(G, r, eps, max iter); toc;
Elapsed time is 0.014564 seconds.

And finally we may view that http://www.brown.edu is number 1.

8

http://www.brown.edu
http://www.brown.edu
http://www.brown.edu

-------top 5 websites linking to http:://www.brown.edu-------
pagerank in out url

1 5.210e-02 310 11 http://www.brown.edu
150 3.845e-02 39 1 http://xmlns.com/foaf/0.1
148 2.755e-02 38 1 http://purl.org/rss/1.0/modules/content
118 2.553e-02 225 14 http://www.brown.edu/contact
15 2.490e-02 214 5 http://directory.brown.edu

4.2 Accelerating the Power Method: Sparsity

The most intensive computation in the algorithm presented above is the O(n2) ma-
trix vector multiplication Pv. In this subsection we present a method to speed
up this computation which relies upon the sparsity of the matrix G where Gij =
1{j has a link to page i}.

Notice that we may rewrite the matrix P from equation 8 to take advantage of
sparsity as follows:

P = ez + rGD (12)

where

• e =
[
1 1 ... 1

]T ∈ Rn×1.

• z ∈ R1×n and zi = 1−r
n

if page i has a non-zero number of outgoing links and
zi = 1

n
otherwise. This gives us that, as before, if a page has no outgoing links

we assume that it has an outgoing like to every other page.

• D is diagonal withDii = 1/(number of links outgoing from page i) unless there
are no outgoing links from page i in which case Dii = 0.

Now we observe that Px = e(zx) + r(GD)x where GD is sparse. So the matrix
multiplication we are now doing will be sparse and therefore faster. This leaves us
with the following algorithm:

function [v, res] = sparse power iteration(G, r, eps, max iter)
n = length(G);

c = sum(G,1);
k = find(c~=0);
D = sparse(k,k,1./c(k),n,n);
T = sparse(r*G*D);

z = sparse(((1-r)*(c~=0) + (c==0))/n);
e = ones(n,1);

9

res = zeros(max iter,1);

v = (1/n)*ones(n,1);
for i = 1:max iter

v old = v;
v = e*(z*v) + T*v;
res(i) = norm(v - v old);
if res(i) < eps; break; end

end
v = v/sum(v);

end

We immediately see a speed up with the same results:

>> tic; [v, res] = simple power iteration(G, r, eps, max iter); toc;
Elapsed time is 0.013368 seconds.
>> tic; [v2, res2] = sparse power iteration(G, r, eps, max iter); toc;
Elapsed time is 0.001007 seconds.
>> disp(norm(v - v2));

8.9962e-16

Let us examine speed for different values of n. We hypothesize that using sparsity
the algorithm complexity will change from O(n2) to O(n), as sparse matrix vector
multiplication is O(n). To confirm this hypothesis we randomly generate a sparse
matrix for different values of n from 10 to 1000 and average the algorithm time for
each run, as seen on figure 2.

4.3 Accelerating the Power Method: Adaptive Computa-
tion

Some entries in v may converge faster than others. Therefore at each step of the
preceding algorithm we need only recompute the value vi for entries i at which
|v(k)i − v

(k−1)
i | > ε.

The for loop then becomes:

v = (1/n)*ones(n,1);
not converged = ones(n,1)==1;
for i = 1:max iter

v old = v;
tmp = T(not converged,:)*v;
v(not converged) = e(not converged)*...

(z(not converged)*v old(not converged)) + tmp;
not converged = abs(v - v old) > delta;
res(i) = norm(v - v old);

10

Figure 1: Exemplar Connection Matrix

Figure 2: Difference in Algorithm Speed, ε = 10−5, r = 0.85

11

if res(i) < eps; break; end
end
v = v/sum(v);

We find that for δ = ε/2n, roughly half the entries will have already converged by
the iteration before we break out of the loop. Unsurprisingly, the results from this
algorithm are slightly different than the results from the two previous algorithms.
However, the algorithms always match on the entries with the highest value (which
are the most important).

4.4 Accelerating the Power Method: Aitken Extrapolation

The Aitken Extrapolation method may allow us to find the dominant eigenvector
faster. The idea is to that three consecutive vectors from the algorithm v(k−2), v(k−1)

and v(k) can be used to obtain an estimate of the dominant eigenvector, which will
speed up convergence. Assume that u1, u2 are the largest eigenvalues and that v(k−2)

can be approximately expressed as a linear combination of u1 and u2. Then

v(k−2) = u1 + α2u2 (13)

v(k−1) = u1 + α2λ2u2 (14)

v(k) = u1 + α2λ
2
2u2 (15)

as λ1 = 1. Now let g and h be defined as

gi =
(
x
(k−1)
i − x(k−2)i

)2
(16)

hi = x
(k)
i − 2x

(k−1)
i + x

(k−2)
i (17)

From some algebra we obtain that gi = α2
2(λ2 − 1)2(u2)

2
i and hi = α2(λ2 − 1)2(u2)i

and so f = g/h = α2u2. Consequently u1 = v(k−2) − f . Of course this does not give
us the actual u1 as then we would be done. This method relied on the assumption
that v(k−2) can be written as a linear combination of the first two eigenvectors, which
is an approximation. However, we hope this approximation is close.

The code for this algorithm is as follows.

function [v, res] = aitken power iteration(G, r, eps, max iter)
n = length(G);

c = sum(G,1);
k = find(c~=0);
D = sparse(k,k,1./c(k),n,n);
T = sparse(r*G*D);

12

z = sparse(((1-r)*(c~=0) + (c==0))/n);
e = ones(n,1);

res = zeros(max iter,1);

v = zeros(n, max iter);
v(:,1) = (1/n)*ones(n,1);
for i = 2:max iter

v(:,i) = e*(z*v(:,i-1)) + T*v(:,i-1);
res(i) = norm(v(:,i) - v(:,i-1));
if res(i) < eps; break; end
if rand < 0.2 && i >= 3

v(:,i) = aitken(v(:,i-2), v(:,i-1), v(:,i));
end

end
v = v(:,i)/sum(v(:,i));

end

function u = aitken(v1, v2, v3)
g = (v2 - v1).ˆ2;
h = v3 - 2*v2 + v1;
u = v1 - g./h;

end

And as you can see from figure 3, where the residual norms are plotted on a log
scale, the Aitken algorithm converges slightly faster. As a drawback this algorithm
is slower and does not appear to work all of the time. In 3, the value of r was set to
0.99 to slow down convergence. Figure 4 shows the results for r = 0.85.

5 Linear Solver Approach

Recall that in formula 12 we state that the value vector v is the dominant eigenvector
of the matrix P = ez + rGD. And so (ez + rGD)v = v. Moving all terms to the
same side we arrive at

(I − ez − rGD)v = 0 (18)

which in turn implies that
(I − rGD)v = eγ (19)

where γ = zv. Recall that z is a row vector and v is a column vector and so zv is a
constant. As a result we may just take γ = 1, then solve the system for v and rescale
v so that

∑n
i=1 vi = 1.

13

Figure 3: Difference in Convergence Speed, r = 0.99

Figure 4: Difference in Convergence Speed, r = 0.85

14

5.1 Direct

We now have a linear system
(I − rGD)v = e (20)

which we need to solve. First we will do so with MATLABs built in linear solver.

load('brown500.mat')
% Get a reference solution from the Power Method
r = 0.85; eps = 1e-6; max iter = 100;
[v power, ~] = sparse power iteration(G, r, eps, max iter);

% Use MATLABs linear system solver to solve directly.
c = sum(G,1);
k = find(c~=0);
n = length(G);
D = sparse(k,k,1./c(k),n,n);
e = ones(n,1);
I = speye(n,n);
v direct = (I - r*G*D)\e;
v direct = v direct/sum(v direct);

% Show the error
disp(norm(v power - v direct));

Running this code we get and the result 4.5158e-06 which is reassuring as we had
set ε = 10−6.

However, we can also write the direct solver ourselves. Though there are many ways
we could accomplish this, we proceed with Gaussian Elimination. This will allow us
to find LU such that P (I − rGD) = LU where L is lower triangular, U is upper
triangular, and P is our pivot matrix. Next we may use simple forward substitution
to solve for w in Lw = Pe then backwards substitution to solve for v in Uv = w.
Finally we rescale v so that

∑n
i=1 vi = 1. The code for doing so is as follows:

>> [L,U,P] = gepp(I-r*G*D);
>> Pe = P*e;
>> w = forwardsub(L,Pe);
>> v gepp = backsub(U,w);
>> v gepp = v gepp/sum(v gepp);
>> disp(norm(v gepp - v direct))

9.2805e-17

Which returns the same solution as MATLABs solver as expected. All the code for
gepp, backsub and forwardsub can be found in the appendix.

15

5.2 Iterative (Preconditioned) GMRES method: A Krylov
Subspace Method for Non-Symmetric Linear Systems

Iterative methods are also extremely effective for solving linear systems. Krylov
Subspace algorithms create a Krylov Subspace Kn = span{b, Ab, ..., An−1b} then find
an approximate solution xn in Kn. The Conjugate Gradient method is the most
popular algorithm though it only works for symmetric, positive definite systems.

A popular technique is to instead solve M−1Ax = M−1b. This is called Left Pre-
conditioning. Alternatively, we can right precondition by solving AM−1u = b then
letting x = M−1u.

One common issue is that the vectors {b, Ab, ..., An−1b} can be close to linearly de-
pendent, and so it is helpful to find an orthogonal basis for them. We can use
Arnoldi Iteration do so, which works almost exactly as the Modified Gram-Schmidt
algorithm. This brings us to the pseudocode of the GMRES algorithm (without
preconditioning).

for n = 1, 2, ...

1. Get Qn = [q1 q2 ... qn] where {q1, ..., qn} is an orthogonal basis for Kn
using the Arnoldi iteration. (With the Arnoldi iteration we also obtain an
n+ 1× n upper Hessenberg matrix Hn where AQn = Qn+1Hn.)

2. Compute the best yn. In other words, the yn which minimizes ‖Hnyn − βe1‖.
BecauseQn is orthogonal, this is identical to ‖Axn − b‖ where β = ‖b− Ax0‖.
(This is a least squares problem. We can use Givens Rotation to find a
matrix which we can multiply with Hn to get an upper triangular system,
which can then be easily solved.)

3. Let xn = Qnyn and break if residual below threshold.

Code on the internet was a very helpful basis for the implementation of the algorithm,
though I could not find any code that used preconditioning and so I made the neces-
sary adjustments independently. Since the MATLAB code for Right Preconditioned
GMRES is long I have placed it in the appendix.

We run this code with no preconditioner and the Jacobi preconditioner and plot the
residual norms. Of course we also compare the the page-rank value we obtained
from solving the direct system to ensure the result is correct. The Jacobi precon-
ditioner speeds up convergence as expected, as showcased by figure 5, generated by
the following code.

load('brown500.mat')

16

% Use MATLABs linear system solver to solve directly.
c = sum(G,1);
k = find(c~=0);
n = length(G);
D = sparse(k,k,1./c(k),n,n);
e = ones(n,1);
I = speye(n,n);
r = 0.9; A = I - r*G*D;
v direct = (I - r*G*D)\e;
v direct = v direct/sum(v direct);

% GMRES, no preconditioner
[x1,res1] = gmres impl(A,e, eye(length(A)));
% GMRES, Jacobi preconditioner
[x2,res2] = gmres impl(A,e, diag(diag(A)));

% Showcase norms, should be machine 0
norm(x1-v direct)
norm(x2-v direct)

% Plot
semilogy(res1)
hold on
semilogy(res2)
legend('No Preconditioner', 'Jacobi Preconditioner');
xlabel('Iteration #'); ylabel('Residual');
title('GMRES right preconditoned - cut off 1e-14')

ans =

3.8380e-16

ans =

9.1449e-17

17

Figure 5: GMRES

6 Appendix

6.1 Omitted Theorems

Theorem 6.1: For any homogenous Markov chain {Xt}t∈N with stochastic matrix
P it follows that P(Xk+t = i|Xk = j) = P k

ij for all t ∈ N, i, j ∈ X .

proof. Since the transition kernel is time invariant, showing that P(Xt = i|X0 =
j) = P k

ij for all t ∈ N is sufficient in proving our claim. We now proceed inductively.
For t = 1 we have that P(X1 = i|X0 = j) = P 1

ij by definition. Now assume that for
some fixed t = k, P(Xk = i|X0 = j) = P k

ij for all states i, j ∈ X . We now observe
that

P(Xk+1 = i|X0 = j) =
n∑
`=1

P(Xk+1 = i|Xk = `)︸ ︷︷ ︸
=Pi`

∗P(Xk = `|X0 = j)︸ ︷︷ ︸
=Pk

`j

=
n∑
`=1

P k
i`P`j

= P k+1
ij

18

and we have therefore proved our claim by induction.

Theorem 6.2: If {Xt} is an irreducible Markov chain with transition matrix T
and stationary distribution π then limt→∞

1
t

∑t
s=1 f(Xs) converges almost surely to

E[f(X)] where X ∼ π.

This theorem is called The Ergodic Theorem. The proof is an application of
stopping times and the strong law of large numbers. Since the proof relies more on
probability theory we do not present it fully. Essentially, a sequence of stopping times
τx,n are constructed where τx,n is nth time that the system visits state x ∈ X . Then,
for each x, an iid sequence of random variables Y1, Y2, ... where Yn =

∑τx,n−1
s=τx,n−1

f(Xs).
Since the Yn are iid we can invoke the SLLN.

6.2 Omitted Code

GEPP

function [L, U, P] = gepp(A)

U = A; L = eye(size(A)); P = eye(size(A));

m = size(A,1);

for k = 1:m-1
vec = U(k:m,k);

[val, i] = max(abs(vec));
alpha k = i+k-1;

if (alpha k ~= k)
tmp = U(k,k:m);
U(k,k:m) = U(alpha k,k:m);
U(alpha k,k:m) = tmp;

tmp = vec(i);
vec(i) = vec(1);
vec(1) = tmp;

tmp = L(k,1:k-1);
L(k,1:k-1) = L(alpha k,1:k-1);
L(alpha k,1:k-1) = tmp;

tmp = P(k,:);
P(k,:) = P(alpha k,:);
P(alpha k,:) = tmp;

end

19

mul k = vec(2:end)/vec(1,1);

L(k+1:m,k) = mul k;
U(k+1:m,k+1:m) = U(k+1:m,k+1:m) - mul k*U(k,k+1:m);

end

U = triu(U);

return

Forwardsub and Backwardsub

function [x] = forwardsub(L, b)

n = length(b);
x = zeros(n,1);

for k = 1:n
x(k) = (1/L(k,k))*(b(k) - L(k,1:k-1)*x(1:k-1));

end

end

function [x] = backsub(U, b)

n = length(b);
x = zeros(n,1);

for k = n:-1:1
x(k) = (1/U(k,k))*(b(k) - U(k,k+1:end)*x(k+1:end));

end

end

Right Preconditioned GMRES

function [x, res] = gmres impl(A, b, M)
n = length(A);
% initial guess is 0's of length n
x = zeros(n,1);
% set max iters to 100
max iters = 40; res = zeros(max iters,1);
% set error threshold
eps = 1e-14;
% norm of B will be used
norm b = norm(b);
% e1 will be used

20

e1 = zeros(n,1); e1(1) = 1;
% initial residual
r = b - A*(M\x);
norm r = norm(r);
% will be used for GR
s = zeros(max iters,1);
c = zeros(max iters,1);
% H is a hessenberg matrix, Q(:,1:k) is basis for
% k dimensional krylov subspace
H = zeros(n,n); Q = zeros(n,n);
Q(:,1) = r/norm r;
beta = norm r*e1;
for k = 1:max iters

% get Hessenberg matrix H and basis Q for Krylov subspace
[H(1:k+1,k), Q(:,k+1)] = arnoldi func(A, Q, k, M);
% apply GR
[H(1:k+1,k), c(k), s(k)] = apply GR(H(1:k+1,k), c, s, k);
% update res
beta(k+1) = -s(k)*beta(k);
beta(k) = c(k)*beta(k);
res(k)=abs(beta(k+1))/norm b;
if res(k) < eps; break; end

end
% get result
y = H(1:k,1:k)\beta(1:k);
x = x+M\(Q(:,1:k)*y);
% scale because page rank vec normalizes to 1
x = x/sum(x);

res = res(res>0);
end
% arnoldi
function [h, q] = arnoldi func(A, Q, k, M)

h = zeros(k,1); q = A*(M\Q(:,k));
for i = 1:k

h(i)= q'*Q(:,i); q = q - h(i)*Q(:,i);
end
h(k+1) = norm(q); q = q/h(k+1);

end
% apply givens rotation
function [h, ck, sk] = apply GR(h, c, s, k)

for i = 1:k-1
tmp = c(i)*h(i) + s(i)*h(i+1);
h(i+1) = -s(i)*h(i) + c(i)*h(i+1);
h(i)= tmp;

end
[ck, sk] = GR(h(k), h(k+1));
h(k) = ck*h(k) + sk*h(k+1); h(k+1) = 0;

end
% get givens rotation c and s
function [c, s] = GR(u, v)

21

if u == 0
c = 0; s = 1;

else
t = sqrt(uˆ2 + vˆ2);
c = abs(u)/t; s = c*v/u;

end
end

22

	Introduction
	Preliminaries
	Eigenvalues and Eigenvectors
	Markov Chains

	Formulation
	The Equation
	The Surfer

	Eigenvalue/Eigenvector Problem Approach
	The Power Method
	Accelerating the Power Method: Sparsity
	Accelerating the Power Method: Adaptive Computation
	Accelerating the Power Method: Aitken Extrapolation

	Linear Solver Approach
	Direct
	Iterative (Preconditioned) GMRES method: A Krylov Subspace Method for Non-Symmetric Linear Systems

	Appendix
	Omitted Theorems
	Omitted Code

