Recitation 5

Three's Trick

Review

Defn 1: We say that $a \mid b$ (a divides b) when b = ka for some $k \in \mathbb{Z}$.

Defn 2: $a \equiv b \pmod{m}$ if $m \mid (b-a)$. In other words, a and b have the same remainder upon division by m. Convince yourself that these statements are equivelant.

Properties of Congruence Relations:

For $a, b \in \mathbb{Z}^+$, if $a \equiv b \mod m$, then

- $a + c \equiv b + c \mod m$ for $c \in \mathbb{Z}$
- $ac \equiv bc \pmod{m}$ for $c \in \mathbb{Z}$
- $a^n \equiv b^n \mod m$ for $n \in \mathbb{Z}^+$

If we also have $c \equiv d \pmod{m}$, then

- $a + c \equiv b + d \mod m$
- $\bullet \ ac \equiv bd \mod m$

Theorom 1: For any $a, b \in \mathbb{Z}$ there exists $u, v \in \mathbb{Z}$ such that au + bv = gcd(a, b). In words, we say that a and b can be written as a linear combination of their gcd.

Theorem 2: The congruence $ax \equiv c \pmod{m}$ has a solution if and only if the gcd(a,m) divides c.

 $gcd(a,m) \mid c.$

Warm-Up

a. Given $a \equiv b \pmod{m}$, prove $a + c \equiv b + c \pmod{m}$ for $c \in \mathbb{Z}$.

b. Given $a \equiv b \pmod{m}$, prove $ac \equiv bc \pmod{m}$ for $c \in \mathbb{Z}$.

c. Given $a \equiv b \pmod{m}$, prove $a^2 \equiv b^2 \pmod{m}$.

d. For every odd integer n, prove that $n^4 - 1$ is divisible by 8.

Section Lesson - Modular Inverses and the Three's Trick

Say we are trying to solve for x in the equation 8x = 2, how would we do so? Answer: we would multiply both sides by $8^{-1} = \frac{1}{8}$. This is called the inverse of 8.

$$\frac{1}{8} \cdot 8 \cdot x = \frac{1}{8} \cdot 2$$
$$\Rightarrow x = 0.25$$

And in general, if we are trying to solve for x in the equaltion ax = c we simply multiply both sides by $a^{-1} = \frac{1}{a}$.

The a^{-1} notation indicates that $a^{-1} \cdot a = 1$.

However, it is not so simple when we are working with congruence relations.

For example, there is **no solution** for x in the equation $8x \equiv 2 \pmod{12}$.

In general, $ax \equiv c \pmod{m}$ has a solution if and only if $gcd(a, m) \mid c$. (In english: if and only if the gcd of a and m divides c.)

a. Prove that if gcd(a, m) | c then $ax \equiv c \pmod{m}$ has a solution. **Hint**: Let d = gcd(a, m). From Theorom 1 above we know that d = au + mv for some $u, v \in \mathbb{Z}$.

Hint: Since $d \mid c$ then c = kd for some $k \in \mathbb{Z}$

b. Use the strategy you found above to solve for $4x \equiv 6 \pmod{14}$. Use the fact that $4 \cdot 4 + (-1) \cdot 14 = 2$.

Modular Inverses Explained

A modular inverse for $a \mod m$ is a number a^{-1} such that $a \cdot a^{-1} \equiv 1 \pmod{m}$. In other words, a modular inverse for $a \mod m$ is the x which solves $ax \equiv 1 \pmod{m}$. c. If a has a modular inverse mod m then what is gcd(a, m).

A modular inverse is extremely helpful in solving equations $ax \equiv b \pmod{m}$. If a has a modular inverse mod m then $x \equiv a^{-1}b \pmod{m}$.

d. Use the technique from question "a" to find the modular inverse of 4 mod 9.
Hint: Use the fact that 28-27 = 1.

e. Use 4^{-1} to solve for x in the equation $4x \equiv 3 \pmod{9}$. Verify your answer.

The Threes Trick

Here is a trick to determine if a number n is divisible by 3: *"If the sum of the digits of* n *is divisble by 3, so is* n." For example, 261 is divisble by 3 since 2 + 6 + 1 = 9. You are going to prove this.

f. For any $k \in \mathbb{N}$, what is 10^k congruent to mod 3?

- g. For any $k \in \mathbb{N}$, what is the modular inverse of $10^k \mod 3$; Recall the modular inverse is the x which solves $10^k x \equiv 1 \pmod{3}$
- h. Prove the "Threes trick" by expanding a number in terms of its digits.

i. Does the Threes trick work when we are not in Base 10? What numbers does it apply for in base b?