
CSCI 0220 Discrete Structures and Probability Klivans

Recitation 7

Logic and Complexity

Review

Operations on propositions:

P Q ¬P P ∧Q P ∨Q P ⊕Q P =⇒ Q P ⇐⇒ Q
T T F T T F T T
T F F F T T F F
F T T F T T T F
F F T F F F T T

where the notation is interpreted as follows

• ¬ means “not”

• ∧ means “and”

• ∨ means “or”

• ⊕ means “or, but not both of”, which we call “xor”

• =⇒ means “implies”

• ⇐⇒ means “if and only if”

Warm-Up

a. Answer true or false for all of the following. (≡ means that each propositions
always have the same truth value).

i. p ∨ q ≡ ¬p ∧ ¬q
ii. (p ∧ q) ∨ r ≡ p ∧ (q ∨ r)

iii. p⇒ ¬q ≡ p ∨ q

iv. p⇒ q ≡ p ∧ ¬q
v. p⇔ q ≡ (p ∧ q) ∨ (¬p ∧ ¬q)

vi. p ∧ ¬q ≡ ¬(¬p ∨ q)

vii. (p ∨ q) ∧ r ≡ (p ∧ r) ∨ (q ∧ r)

1



b. Give an assigment to the variables x1, x2, x3 which makes the following logical
expression evaluate to true.

(x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ x3

c. Is the following logical expression is always true? Explain your answer.

(x1 ∧ x2) ∨ (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x3 ∧ ¬x3)

d. Come up with a logical expression with three variables which has only one as-
signment to the variables which makes it true.

e. Given inputs p and q, create a circuit which outputs p⊕ q using only not gates,
or gates, and and gates.

2



f. Given inputs x1, x2 and x3, create a circuit which outputs true if and only if
exactly one input is true.

Section Lesson - P vs. NP

Everything past this point is outside the scope of CS22, though it will reinforce con-
cepts from the class. These concepts are covered further in CS1010 and CS157.

3



An algorithm is simply a series of steps. It can be expressed as a computer program,
instructions in a cookbook, directions on a map, as a plain sentence, etc. For example,
consider the following maximum algorithm that finds the maximum element given
list as input.

v = -infinity

for each element x in list:

v = max(v, x)

output v

It is often helpful to decribe the run time of an algorithm. The run time can be
thought of as the number of steps that the algorithm takes, and is often expressed
as a function as the size of the input to the algorithm

For example, if n is the size of the input list to the maximum algorithm then the
algorithm has a run time of f(n) = n steps.

Give an informal inductive argument as to why this is true. (Hint: Start by consid-
ering the base case of a list with one item. The one item is clearly the maximum so
we return it in 1 step.)

An algorithm is considered fast if its run time is a polynomial. This polynomial
can be n2, or even n100 + 4n63, it doesn’t matter. If the run time is polynomial then
it is feasible for a computer. If the run time is instead exponential, like 2n, then it
is infeasible for a computer if n is large. The terms polynomial time and fast are
used synonymously for the rest of this handout.

4



Consider the following algorithm which determines if there is any assignment to a
logical expression with variables x1, ..., xn that is ever true. (The problem of deter-
mining if a logical expression evaluates to true is called SAT).

Try every assignment to the variables.

If the logical expression ever evaluates to true, return true.

j. What is the run time of this algorithm in terms of n, the number of variables.

Hint: How many assignments do you have to try? Think in terms of 0/1 strings.

P is the set of problems that can be solved in polynomial time. In other words, a
problem in P can be solved by an algorithm that has a polynomial run time.

Finding the maximum element in a list is a P problem, as is sorting a list.

Unfortunately, the algorithm given above is the best known algorithm for determining
if a logical expression ever evaluates to true (solving SAT). Therefore it is not a P
problem (as far as we know).

NP

A problem is in NP if, given a candidate solution to the problem, there exists a fast
algorithm to determine whether the candidate is in fact a valid solution.

For example, determining if a logical expression ever evaluates to true (SAT) is an
NP problem. We don’t know how to quickly find an assignment to the variables
which makes the expression true, but given an assignment to the variables we can
quickly check that this assignment makes the expression true by just constructing
the corresponding circuit.

k. Challenge: Another NP problem is the following: Given a number n where n = pq
for two large primes p and q, can you find p and q? Explain why this is an NP
problem.

5



At first it looks like this is a P problem as well because you can simply check all pairs
of numbers between 0 and

√
n. However, when you encode a number using 0’s and

1’s in a computer, it takes log2(n) bits. Therefore looping through
√
n numbers is

exponential in the size of your input (we understand that this is confusing so please
call over a TA if you wish to discuss this further).

Most computer scientists beleive that P 6= NP but no one can come up with a proof.
There is a million dollar reward for finding one. If you were to prove that P = NP
then RSA would be useless.

Challenge: NP-Hard

It turns out that for any problem in NP, you can come up with a logic circuit for
it where determining if the circuit ever evaluates true corresponds to solving the
original problem.

Therefore, if you can find a “fast” algorithm for determining if a logical circuit ever
outputs true then P = NP.

Changing one problem into another problem is called a “reduction”.

A problem p is NP-Hard if there is a reduction from every problem in NP to p.

Another example of a problem that is NP-Hard is determining if a graph is 3-
colorable, which you will learn about soon.

Challenge: Not in NP

There are problems that we think are even harder then NP problems. For example,
given a logical expression, is it always true?

6


